
PuTTY User Manual
PuTTY is a free (MIT-licensed) Win32 Telnet and SSH client. This manual documents PuTTY,
and its companion utilities PSCP, PSFTP, Plink, Pageant and PuTTYgen.
Note to Unix users: this manual currently primarily documents the Windows versions of the
PuTTY utilities. Some options are therefore mentioned that are absent from the Unix version; the
Unix version has features not described here; and the pterm and command-line puttygen
utilities are not described at all. The only Unix-specific documentation that currently exists is the
man pages.
This manual is copyright 2001-2004 Simon Tatham. All rights reserved. You may distribute this
documentation under the MIT licence. See appendix C for the licence text in full.
Chapter 1: Introduction to PuTTY
Chapter 2: Getting started with PuTTY
Chapter 3: Using PuTTY
Chapter 4: Configuring PuTTY
Chapter 5: Using PSCP to transfer files securely
Chapter 6: Using PSFTP to transfer files securely
Chapter 7: Using the command-line connection tool Plink
Chapter 8: Using public keys for SSH authentication
Chapter 9: Using Pageant for authentication
Chapter 10: Common error messages
Appendix A: PuTTY FAQ
Appendix B: Feedback and bug reporting
Appendix C: PuTTY Licence

Chapter 1: Introduction to PuTTY
PuTTY is a free SSH, Telnet and Rlogin client for 32-bit Windows systems.
Section 1.1: What are SSH, Telnet and Rlogin?
Section 1.2: How do SSH, Telnet and Rlogin differ?

Section 1.1: What are SSH, Telnet and Rlogin?
If you already know what SSH, Telnet and Rlogin are, you can safely skip on to the next section.
SSH, Telnet and Rlogin are three ways of doing the same thing: logging in to a multi-user
computer from another computer, over a network.
Multi-user operating systems, such as Unix and VMS, usually present a command-line interface
to the user, much like the ‘Command Prompt’ or ‘MS-DOS Prompt’ in Windows. The system
prints a prompt, and you type commands which the system will obey.
Using this type of interface, there is no need for you to be sitting at the same machine you are
typing commands to. The commands, and responses, can be sent over a network, so you can sit at
one computer and give commands to another one, or even to more than one.
SSH, Telnet and Rlogin are network protocols that allow you to do this. On the computer you sit
at, you run a client, which makes a network connection to the other computer (the server). The
network connection carries your keystrokes and commands from the client to the server, and
carries the server's responses back to you.
These protocols can also be used for other types of keyboard-based interactive session. In
particular, there are a lot of bulletin boards, talker systems and MUDs (Multi-User Dungeons)
which support access using Telnet. There are even a few that support SSH.
You might want to use SSH, Telnet or Rlogin if:

• you have an account on a Unix or VMS system which you want to be able to access from
somewhere else

• your Internet Service Provider provides you with a login account on a web server. (This
might also be known as a shell account. A shell is the program that runs on the server and
interprets your commands for you.)

• you want to use a bulletin board system, talker or MUD which can be accessed using
Telnet.

You probably do not want to use SSH, Telnet or Rlogin if:
• you only use Windows. Windows computers have their own ways of networking between

themselves, and unless you are doing something fairly unusual, you will not need to use
any of these remote login protocols.

Section 1.2: How do SSH, Telnet and Rlogin differ?
This list summarises some of the differences between SSH, Telnet and Rlogin.

• SSH (which stands for ‘secure shell’) is a recently designed, high-security protocol. It
uses strong cryptography to protect your connection against eavesdropping, hijacking and
other attacks. Telnet and Rlogin are both older protocols offering minimal security.

• SSH and Rlogin both allow you to log in to the server without having to type a password.
(Rlogin's method of doing this is insecure, and can allow an attacker to access your
account on the server. SSH's method is much more secure, and typically breaking the
security requires the attacker to have gained access to your actual client machine.)

• SSH allows you to connect to the server and automatically send a command, so that the
server will run that command and then disconnect. So you can use it in automated
processing.

The Internet is a hostile environment and security is everybody's responsibility. If you are
connecting across the open Internet, then we recommend you use SSH. If the server you want to
connect to doesn't support SSH, it might be worth trying to persuade the administrator to install
it.
If your client and server are both behind the same (good) firewall, it is more likely to be safe to
use Telnet or Rlogin, but we still recommend you use SSH.

Chapter 2: Getting started with PuTTY
This chapter gives a quick guide to the simplest types of interactive login session using PuTTY.
Section 2.1: Starting a session
Section 2.2: Verifying the host key (SSH only)
Section 2.3: Logging in
Section 2.4: After logging in
Section 2.5: Logging out

Section 2.1: Starting a session
When you start PuTTY, you will see a dialog box. This dialog box allows you to control
everything PuTTY can do. See chapter 4 for details of all the things you can control.
You don't usually need to change most of the configuration options. To start the simplest kind of
session, all you need to do is to enter a few basic parameters.
In the ‘Host Name’ box, enter the Internet host name of the server you want to connect to. You
should have been told this by the provider of your login account.
Now select a login protocol to use, from the ‘Protocol’ buttons. For a login session, you should
select Telnet, Rlogin or SSH. See section 1.2 for a description of the differences between the
three protocols, and advice on which one to use. The fourth protocol, Raw, is not used for
interactive login sessions; you would usually use this for debugging other Internet services (see
section 3.6).
When you change the selected protocol, the number in the ‘Port’ box will change. This is normal:
it happens because the various login services are usually provided on different network ports by
the server machine. Most servers will use the standard port numbers, so you will not need to
change the port setting. If your server provides login services on a non-standard port, your
system administrator should have told you which one. (For example, many MUDs run Telnet
service on a port other than 23.)
Once you have filled in the ‘Host Name’, ‘Protocol’, and possibly ‘Port’ settings, you are ready
to connect. Press the ‘Open’ button at the bottom of the dialog box, and PuTTY will begin trying
to connect you to the server.

Section 2.2: Verifying the host key (SSH only)
If you are not using the SSH protocol, you can skip this section.
If you are using SSH to connect to a server for the first time, you will probably see a message
looking something like this:
The server's host key is not cached in the registry. You
have no guarantee that the server is the computer you
think it is.
The server's rsa2 key fingerprint is:
ssh-rsa 1024 7b:e5:6f:a7:f4:f9:81:62:5c:e3:1f:bf:8b:57:6c:5a
If you trust this host, hit Yes to add the key to
PuTTY's cache and carry on connecting.
If you want to carry on connecting just once, without
adding the key to the cache, hit No.
If you do not trust this host, hit Cancel to abandon the
connection.
This is a feature of the SSH protocol. It is designed to protect you against a network attack
known as spoofing: secretly redirecting your connection to a different computer, so that you send
your password to the wrong machine. Using this technique, an attacker would be able to learn the
password that guards your login account, and could then log in as if they were you and use the
account for their own purposes.
To prevent this attack, each server has a unique identifying code, called a host key. These keys
are created in a way that prevents one server from forging another server's key. So if you connect
to a server and it sends you a different host key from the one you were expecting, PuTTY can
warn you that the server may have been switched and that a spoofing attack might be in progress.
PuTTY records the host key for each server you connect to, in the Windows Registry. Every time
you connect to a server, it checks that the host key presented by the server is the same host key as
it was the last time you connected. If it is not, you will see a warning, and you will have the
chance to abandon your connection before you type any private information (such as a password)
into it.
However, when you connect to a server you have not connected to before, PuTTY has no way of
telling whether the host key is the right one or not. So it gives the warning shown above, and
asks you whether you want to trust this host key or not.
Whether or not to trust the host key is your choice. If you are connecting within a company
network, you might feel that all the network users are on the same side and spoofing attacks are
unlikely, so you might choose to trust the key without checking it. If you are connecting across a
hostile network (such as the Internet), you should check with your system administrator, perhaps
by telephone or in person. (Some modern servers have more than one host key. If the system
administrator sends you more than one fingerprint, you should make sure the one PuTTY shows
you is on the list, but it doesn't matter which one it is.)

Section 2.3: Logging in
After you have connected, and perhaps verified the server's host key, you will be asked to log in,
probably using a username and a password. Your system administrator should have provided you
with these. Enter the username and the password, and the server should grant you access and
begin your session. If you have mistyped your password, most servers will give you several
chances to get it right.
If you are using SSH, be careful not to type your username wrongly, because you will not have a
chance to correct it after you press Return; many SSH servers do not permit you to make two
login attempts using different usernames. If you type your username wrongly, you must close
PuTTY and start again.
If your password is refused but you are sure you have typed it correctly, check that Caps Lock is
not enabled. Many login servers, particularly Unix computers, treat upper case and lower case as
different when checking your password; so if Caps Lock is on, your password will probably be
refused.

Section 2.4: After logging in
After you log in to the server, what happens next is up to the server! Most servers will print some
sort of login message and then present a prompt, at which you can type commands which the
server will carry out. Some servers will offer you on-line help; others might not. If you are in
doubt about what to do next, consult your system administrator.

Section 2.5: Logging out
When you have finished your session, you should log out by typing the server's own logout
command. This might vary between servers; if in doubt, try logout or exit, or consult a
manual or your system administrator. When the server processes your logout command, the
PuTTY window should close itself automatically.
You can close a PuTTY session using the Close button in the window border, but this might
confuse the server - a bit like hanging up a telephone unexpectedly in the middle of a
conversation. We recommend you do not do this unless the server has stopped responding to you
and you cannot close the window any other way.

Chapter 3: Using PuTTY
This chapter provides a general introduction to some more advanced features of PuTTY. For
extreme detail and reference purposes, chapter 4 is likely to contain more information.
Section 3.1: During your session
Section 3.2: Creating a log file of your session
Section 3.3: Altering your character set configuration
Section 3.4: Using X11 forwarding in SSH
Section 3.5: Using port forwarding in SSH
Section 3.6: Making raw TCP connections
Section 3.7: The PuTTY command line

Section 3.1: During your session
A lot of PuTTY's complexity and features are in the configuration panel. Once you have worked
your way through that and started a session, things should be reasonably simple after that.
Nevertheless, there are a few more useful features available.
Section 3.1.1: Copying and pasting text
Section 3.1.2: Scrolling the screen back
Section 3.1.3: The System menu

Section 3.1.1: Copying and pasting text
Often in a PuTTY session you will find text on your terminal screen which you want to type in
again. Like most other terminal emulators, PuTTY allows you to copy and paste the text rather
than having to type it again. Also, copy and paste uses the Windows clipboard, so that you can
paste (for example) URLs into a web browser, or paste from a word processor or spreadsheet into
your terminal session.
PuTTY's copy and paste works entirely with the mouse. In order to copy text to the clipboard,
you just click the left mouse button in the terminal window, and drag to select text. When you let
go of the button, the text is automatically copied to the clipboard. You do not need to press Ctrl-
C or Ctrl-Ins; in fact, if you do press Ctrl-C, PuTTY will send a Ctrl-C character down your
session to the server where it will probably cause a process to be interrupted.
Pasting is done using the right button (or the middle mouse button, if you have a three-button
mouse and have set it up; see section 4.11.2). (Pressing Shift-Ins, or selecting ‘Paste’ from the
Ctrl+right-click context menu, have the same effect.) When you click the right mouse button,
PuTTY will read whatever is in the Windows clipboard and paste it into your session, exactly as
if it had been typed at the keyboard. (Therefore, be careful of pasting formatted text into an
editor that does automatic indenting; you may find that the spaces pasted from the clipboard plus
the spaces added by the editor add up to too many spaces and ruin the formatting. There is
nothing PuTTY can do about this.)
If you double-click the left mouse button, PuTTY will select a whole word. If you double-click,
hold down the second click, and drag the mouse, PuTTY will select a sequence of whole words.
(You can adjust precisely what PuTTY considers to be part of a word; see section 4.11.5.) If you
triple-click, or triple-click and drag, then PuTTY will select a whole line or sequence of lines.
If you want to select a rectangular region instead of selecting to the end of each line, you can do
this by holding down Alt when you make your selection. (You can also configure rectangular
selection to be the default, and then holding down Alt gives the normal behaviour instead. See
section 4.11.4 for details.)
If you have a middle mouse button, then you can use it to adjust an existing selection if you
selected something slightly wrong. (If you have configured the middle mouse button to paste,
then the right mouse button does this instead.) Click the button on the screen, and you can pick
up the nearest end of the selection and drag it to somewhere else.
It's possible for the server to ask to handle mouse clicks in the PuTTY window itself. If this
happens, the mouse cursor will turn into an arrow, and using the mouse to copy and paste will
only work if you hold down Shift. See section 4.6.2 and section 4.11.3 for details of this feature
and how to configure it.

Section 3.1.2: Scrolling the screen back
PuTTY keeps track of text that has scrolled up off the top of the terminal. So if something
appears on the screen that you want to read, but it scrolls too fast and it's gone by the time you
try to look for it, you can use the scrollbar on the right side of the window to look back up the
session history and find it again.
As well as using the scrollbar, you can also page the scrollback up and down by pressing Shift-
PgUp and Shift-PgDn. You can scroll a line at a time using Ctrl-PgUp and Ctrl-PgDn. These are
still available if you configure the scrollbar to be invisible.
By default the last 200 lines scrolled off the top are preserved for you to look at. You can
increase (or decrease) this value using the configuration box; see section 4.7.3.

Section 3.1.3: The System menu
If you click the left mouse button on the icon in the top left corner of PuTTY's terminal window,
or click the right mouse button on the title bar, you will see the standard Windows system menu
containing items like Minimise, Move, Size and Close.
PuTTY's system menu contains extra program features in addition to the Windows standard
options. These extra menu commands are described below.
(These options are also available in a context menu brought up by holding Ctrl and clicking with
the right mouse button anywhere in the PuTTY window.)
Section 3.1.3.1: The PuTTY Event Log
Section 3.1.3.2: Special commands
Section 3.1.3.3: Starting new sessions
Section 3.1.3.4: Changing your session settings
Section 3.1.3.5: Copy All to Clipboard
Section 3.1.3.6: Clearing and resetting the terminal
Section 3.1.3.7: Full screen mode

Section 3.1.3.1: The PuTTY Event Log
If you choose ‘Event Log’ from the system menu, a small window will pop up in which PuTTY
logs significant events during the connection. Most of the events in the log will probably take
place during session startup, but a few can occur at any point in the session, and one or two occur
right at the end.
You can use the mouse to select one or more lines of the Event Log, and hit the Copy button to
copy them to the clipboard. If you are reporting a bug, it's often useful to paste the contents of
the Event Log into your bug report.

Section 3.1.3.2: Special commands
Depending on the protocol used for the current session, there may be a submenu of ‘special
commands’. These are protocol-specific tokens, such as a ‘break’ signal, that can be sent down a
connection in addition to normal data. Their precise effect is usually up to the server. Currently
only Telnet and SSH have special commands.
The following special commands are available in Telnet:

• Are You There
• Break
• Synch
• Erase Character

PuTTY can also be configured to send this when the Backspace key is pressed; see
section 4.15.3.

• Erase Line
• Go Ahead
• No Operation

Should have no effect.
• Abort Process
• Abort Output
• Interrupt Process

PuTTY can also be configured to send this when Ctrl-C is typed; see section 4.15.3.
• Suspend Process

PuTTY can also be configured to send this when Ctrl-Z is typed; see section 4.15.3.
• End Of Record
• End Of File

In an SSH connection, the following special commands are available:
• IGNORE message

Should have no effect.
• Break

Only available in SSH-2, and only during a session. Optional extension; may not be
supported by server. PuTTY requests the server's default break length.

• Signals (SIGINT, SIGTERM etc)
Only available in SSH-2, and only during a session. Sends various POSIX signals. Not
honoured by all servers.

Section 3.1.3.3: Starting new sessions
PuTTY's system menu provides some shortcut ways to start new sessions:

• Selecting ‘New Session’ will start a completely new instance of PuTTY, and bring up the
configuration box as normal.

• Selecting ‘Duplicate Session’ will start a session in a new window with precisely the
same options as your current one - connecting to the same host using the same protocol,
with all the same terminal settings and everything.

• In an inactive window, selecting ‘Restart Session’ will do the same as ‘Duplicate
Session’, but in the current window.

• The ‘Saved Sessions’ submenu gives you quick access to any sets of stored session
details you have previously saved. See section 4.1.2 for details of how to create saved
sessions.

Section 3.1.3.4: Changing your session settings
If you select ‘Change Settings’ from the system menu, PuTTY will display a cut-down version of
its initial configuration box. This allows you to adjust most properties of your current session.
You can change the terminal size, the font, the actions of various keypresses, the colours, and so
on.
Some of the options that are available in the main configuration box are not shown in the cut-
down Change Settings box. These are usually options which don't make sense to change in the
middle of a session (for example, you can't switch from SSH to Telnet in mid-session).

Section 3.1.3.5: Copy All to Clipboard
This system menu option provides a convenient way to copy the whole contents of the terminal
screen (up to the last nonempty line) and scrollback to the clipboard in one go.

Section 3.1.3.6: Clearing and resetting the terminal
The ‘Clear Scrollback’ option on the system menu tells PuTTY to discard all the lines of text that
have been kept after they scrolled off the top of the screen. This might be useful, for example, if
you displayed sensitive information and wanted to make sure nobody could look over your
shoulder and see it. (Note that this only prevents a casual user from using the scrollbar to view
the information; the text is not guaranteed not to still be in PuTTY's memory.)
The ‘Reset Terminal’ option causes a full reset of the terminal emulation. A VT-series terminal is
a complex piece of software and can easily get into a state where all the text printed becomes
unreadable. (This can happen, for example, if you accidentally output a binary file to your
terminal.) If this happens, selecting Reset Terminal should sort it out.

Section 3.1.3.7: Full screen mode
If you find the title bar on a maximised window to be ugly or distracting, you can select Full
Screen mode to maximise PuTTY ‘even more’. When you select this, PuTTY will expand to fill
the whole screen and its borders, title bar and scrollbar will disappear. (You can configure the
scrollbar not to disappear in full-screen mode if you want to keep it; see section 4.7.3.)
When you are in full-screen mode, you can still access the system menu if you click the left
mouse button in the extreme top left corner of the screen.

Section 3.2: Creating a log file of your session
For some purposes you may find you want to log everything that appears on your screen. You
can do this using the ‘Logging’ panel in the configuration box.
To begin a session log, select ‘Change Settings’ from the system menu and go to the Logging
panel. Enter a log file name, and select a logging mode. (You can log all session output including
the terminal control sequences, or you can just log the printable text. It depends what you want
the log for.) Click ‘Apply’ and your log will be started. Later on, you can go back to the Logging
panel and select ‘Logging turned off completely’ to stop logging; then PuTTY will close the log
file and you can safely read it.
See section 4.2 for more details and options.

Section 3.3: Altering your character set configuration
If you find that special characters (accented characters, for example, or line-drawing characters)
are not being displayed correctly in your PuTTY session, it may be that PuTTY is interpreting
the characters sent by the server according to the wrong character set. There are a lot of different
character sets available, so it's entirely possible for this to happen.
If you click ‘Change Settings’ and look at the ‘Translation’ panel, you should see a large number
of character sets which you can select, and other related options. Now all you need is to find out
which of them you want! (See section 4.10 for more information.)

Section 3.4: Using X11 forwarding in SSH
The SSH protocol has the ability to securely forward X Window System applications over your
encrypted SSH connection, so that you can run an application on the SSH server machine and
have it put its windows up on your local machine without sending any X network traffic in the
clear.
In order to use this feature, you will need an X display server for your Windows machine, such
as X-Win32 or Exceed. This will probably install itself as display number 0 on your local
machine; if it doesn't, the manual for the X server should tell you what it does do.
You should then tick the ‘Enable X11 forwarding’ box in the Tunnels panel (see section 4.19.1)
before starting your SSH session. The ‘X display location’ box is blank by default, which means
that PuTTY will try to use a sensible default such as :0, which is the usual display location
where your X server will be installed. If that needs changing, then change it.
Now you should be able to log in to the SSH server as normal. To check that X forwarding has
been successfully negotiated during connection startup, you can check the PuTTY Event Log
(see section 3.1.3.1). It should say something like this:
2001-12-05 17:22:01 Requesting X11 forwarding
2001-12-05 17:22:02 X11 forwarding enabled
If the remote system is Unix or Unix-like, you should also be able to see that the DISPLAY
environment variable has been set to point at display 10 or above on the SSH server machine
itself:
fred@unixbox:~$ echo $DISPLAY
unixbox:10.0
If this works, you should then be able to run X applications in the remote session and have them
display their windows on your PC.
Note that if your PC X server requires authentication to connect, then PuTTY cannot currently
support it. If this is a problem for you, you should mail the PuTTY authors and give details (see
appendix B).
For more options relating to X11 forwarding, see section 4.19.1.

Section 3.5: Using port forwarding in SSH
The SSH protocol has the ability to forward arbitrary network connections over your encrypted
SSH connection, to avoid the network traffic being sent in clear. For example, you could use this
to connect from your home computer to a POP-3 server on a remote machine without your POP-
3 password being visible to network sniffers.
In order to use port forwarding to connect from your local machine to a port on a remote server,
you need to:

• Choose a port number on your local machine where PuTTY should listen for incoming
connections. There are likely to be plenty of unused port numbers above 3000. (You can
also use a local loopback address here; see below for more details.)

• Now, before you start your SSH connection, go to the Tunnels panel (see section 4.19.2).
Make sure the ‘Local’ radio button is set. Enter the local port number into the ‘Source
port’ box. Enter the destination host name and port number into the ‘Destination’ box,
separated by a colon (for example, popserver.example.com:110 to connect to a
POP-3 server).

• Now click the ‘Add’ button. The details of your port forwarding should appear in the list
box.

Now start your session and log in. (Port forwarding will not be enabled until after you have
logged in; otherwise it would be easy to perform completely anonymous network attacks, and
gain access to anyone's virtual private network). To check that PuTTY has set up the port
forwarding correctly, you can look at the PuTTY Event Log (see section 3.1.3.1). It should say
something like this:
2001-12-05 17:22:10 Local port 3110 forwarding to
 popserver.example.com:110
Now if you connect to the source port number on your local PC, you should find that it answers
you exactly as if it were the service running on the destination machine. So in this example, you
could then configure an e-mail client to use localhost:3110 as a POP-3 server instead of
popserver.example.com:110. (Of course, the forwarding will stop happening when your
PuTTY session closes down.)
You can also forward ports in the other direction: arrange for a particular port number on the
server machine to be forwarded back to your PC as a connection to a service on your PC or near
it. To do this, just select the ‘Remote’ radio button instead of the ‘Local’ one. The ‘Source port’
box will now specify a port number on the server (note that most servers will not allow you to
use port numbers under 1024 for this purpose).
An alternative way to forward local connections to remote hosts is to use dynamic    proxying.
For this, you will need to select the ‘Dynamic’ radio button instead of ‘Local’, and then you
should not enter anything into the ‘Destination’ box (it will be ignored). This will cause PuTTY
to listen on the port you have specified, and provide a SOCKS proxy service to any programs
which connect to that port. So, in particular, you can forward other PuTTY connections through
it by setting up the Proxy control panel (see section 4.14 for details).
The source port for a forwarded connection usually does not accept connections from any
machine except the SSH client or server machine itself (for local and remote forwardings

respectively). There are controls in the Tunnels panel to change this:
• The ‘Local ports accept connections from other hosts’ option allows you to set up local-

to-remote port forwardings (including dynamic port forwardings) in such a way that
machines other than your client PC can connect to the forwarded port.

• The ‘Remote ports do the same’ option does the same thing for remote-to-local port
forwardings (so that machines other than the SSH server machine can connect to the
forwarded port.) Note that this feature is only available in the SSH 2 protocol, and not all
SSH 2 servers honour it (in OpenSSH, for example, it's usually disabled by default).

You can also specify an IP address to listen on. Typically a Windows machine can be asked to
listen on any single IP address in the 127.*.*.* range, and all of these are loopback addresses
available only to the local machine. So if you forward (for example) 127.0.0.5:79 to a
remote machine's finger port, then you should be able to run commands such as finger
fred@127.0.0.5. This can be useful if the program connecting to the forwarded port doesn't
allow you to change the port number it uses. This feature is available for local-to-remote
forwarded ports; SSH1 is unable to support it for remote-to-local ports, while SSH2 can support
it in theory but servers will not necessarily cooperate.
(Note that if you're using Windows XP Service Pack 2, you may need to obtain a fix from
Microsoft in order to use addresses like 127.0.0.5 - see question A.7.20.)

Section 3.6: Making raw TCP connections
A lot of Internet protocols are composed of commands and responses in plain text. For example,
SMTP (the protocol used to transfer e-mail), NNTP (the protocol used to transfer Usenet news),
and HTTP (the protocol used to serve Web pages) all consist of commands in readable plain text.
Sometimes it can be useful to connect directly to one of these services and speak the protocol ‘by
hand’, by typing protocol commands and watching the responses. On Unix machines, you can do
this using the system's telnet command to connect to the right port number. For example,
telnet mailserver.example.com 25 might enable you to talk directly to the SMTP
service running on a mail server.
Although the Unix telnet program provides this functionality, the protocol being used is not
really Telnet. Really there is no actual protocol at all; the bytes sent down the connection are
exactly the ones you type, and the bytes shown on the screen are exactly the ones sent by the
server. Unix telnet will attempt to detect or guess whether the service it is talking to is a real
Telnet service or not; PuTTY prefers to be told for certain.
In order to make a debugging connection to a service of this type, you simply select the fourth
protocol name, ‘Raw’, from the ‘Protocol’ buttons in the ‘Session’ configuration panel. (See
section 4.1.1.) You can then enter a host name and a port number, and make the connection.

Section 3.7: The PuTTY command line
PuTTY can be made to do various things without user intervention by supplying command-line
arguments (e.g., from a command prompt window, or a Windows shortcut).
Section 3.7.1: Starting a session from the command line
Section 3.7.2: -cleanup
Section 3.7.3: Standard command-line options

Section 3.7.1: Starting a session from the command line
These options allow you to bypass the configuration window and launch straight into a session.
To start a connection to a server called host:
putty.exe [-ssh | -telnet | -rlogin | -raw] [user@]host
If this syntax is used, settings are taken from the Default Settings (see section 4.1.2); user
overrides these settings if supplied. Also, you can specify a protocol, which will override the
default protocol (see section 3.7.3.2).
For telnet sessions, the following alternative syntax is supported (this makes PuTTY suitable for
use as a URL handler for telnet URLs in web browsers):
putty.exe telnet://host[:port]/
In order to start an existing saved session called sessionname, use the -load option
(described in section 3.7.3.1).
putty.exe -load "session name"

Section 3.7.2: -cleanup
If invoked with the -cleanup option, rather than running as normal, PuTTY will remove its
registry entries and random seed file from the local machine (after confirming with the user).

Section 3.7.3: Standard command-line options
PuTTY and its associated tools support a range of command-line options, most of which are
consistent across all the tools. This section lists the available options in all tools. Options which
are specific to a particular tool are covered in the chapter about that tool.
Section 3.7.3.1: -load : load a saved session
Section 3.7.3.2: Selecting a protocol: -ssh , -telnet , -rlogin , -raw
Section 3.7.3.3: -v : increase verbosity
Section 3.7.3.4: -l : specify a login name
Section 3.7.3.5: -L , -R and -D : set up port forwardings
Section 3.7.3.6: -m : read a remote command or script from a file
Section 3.7.3.7: -P : specify a port number
Section 3.7.3.8: -pw : specify a password
Section 3.7.3.9: -A and -a : control agent forwarding
Section 3.7.3.10: -X and -x : control X11 forwarding
Section 3.7.3.11: -t and -T : control pseudo-terminal allocation
Section 3.7.3.12: -N : suppress starting a shell or command
Section 3.7.3.13: -C : enable compression
Section 3.7.3.14: -1 and -2 : specify an SSH protocol version
Section 3.7.3.15: -i : specify an SSH private key

Section 3.7.3.1: -load: load a saved session
The -load option causes PuTTY to load configuration details out of a saved session. If these
details include a host name, then this option is all you need to make PuTTY start a session.
You need double quotes around the session name if it contains spaces.
If you want to create a Windows shortcut to start a PuTTY saved session, this is the option you
should use: your shortcut should call something like
d:\path\to\putty.exe -load "my session"
(Note that PuTTY itself supports an alternative form of this option, for backwards compatibility.
If you execute putty @sessionname it will have the same effect as putty -load
"sessionname". With the @ form, no double quotes are required, and the @ sign must be the
very first thing on the command line. This form of the option is deprecated.)

Section 3.7.3.2: Selecting a protocol: -ssh, -telnet, -rlogin, -
raw
To choose which protocol you want to connect with, you can use one of these options:

• -ssh selects the SSH protocol.

• -telnet selects the Telnet protocol.

• -rlogin selects the Rlogin protocol.

• -raw selects the raw protocol.

These options are not available in the file transfer tools PSCP and PSFTP (which only work with
the SSH protocol).
These options are equivalent to the protocol selection buttons in the Session panel of the PuTTY
configuration box (see section 4.1.1).

Section 3.7.3.3: -v: increase verbosity
Most of the PuTTY tools can be made to tell you more about what they are doing by supplying
the -v option. If you are having trouble when making a connection, or you're simply curious,
you can turn this switch on and hope to find out more about what is happening.

Section 3.7.3.4: -l: specify a login name
You can specify the user name to log in as on the remote server using the -l option. For
example, plink login.example.com -l fred.

These options are equivalent to the username selection box in the Connection panel of the
PuTTY configuration box (see section 4.13.3).

Section 3.7.3.5: -L, -R and -D: set up port forwardings
As well as setting up port forwardings in the PuTTY configuration (see section 4.19.2), you can
also set up forwardings on the command line. The command-line options work just like the ones
in Unix ssh programs.

To forward a local port (say 5110) to a remote destination (say popserver.example.com
port 110), you can write something like one of these:
putty -L 5110:popserver.example.com:110 -load mysession
plink mysession -L 5110:popserver.example.com:110
To forward a remote port to a local destination, just use the -R option instead of -L:
putty -R 5023:mytelnetserver.myhouse.org:23 -load mysession
plink mysession -R 5023:mytelnetserver.myhouse.org:23
To specify an IP address for the listening end of the tunnel, prepend it to the argument:
plink -L 127.0.0.5:23:localhost:23 myhost
To set up SOCKS-based dynamic port forwarding on a local port, use the -D option. For this one
you only have to pass the port number:
putty -D 4096 -load mysession
For general information on port forwarding, see section 3.5.
These options are not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.6: -m: read a remote command or script from a file
The -m option performs a similar function to the ‘Remote command’ box in the SSH panel of the
PuTTY configuration box (see section 4.17.1). However, the -m option expects to be given a
local file name, and it will read a command from that file. On most Unix systems, you can even
put multiple lines in this file and execute more than one command in sequence, or a whole shell
script; but this will not work on all servers (and is known not to work with certain ‘embedded’
servers such as routers).
This option is not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.7: -P: specify a port number
The -P option is used to specify the port number to connect to. If you have a Telnet server
running on port 9696 of a machine instead of port 23, for example:
putty -telnet -P 9696 host.name
plink -telnet -P 9696 host.name
(Note that this option is more useful in Plink than in PuTTY, because in PuTTY you can write
putty -telnet host.name 9696 in any case.)

This option is equivalent to the port number control in the Session panel of the PuTTY
configuration box (see section 4.1.1).

Section 3.7.3.8: -pw: specify a password
A simple way to automate a remote login is to supply your password on the command line. This
is not recommended for reasons of security. If you possibly can, we recommend you set up
public-key authentication instead. See chapter 8 for details.
Note that the -pw option only works when you are using the SSH protocol. Due to fundamental
limitations of Telnet and Rlogin, these protocols do not support automated password
authentication.

Section 3.7.3.9: -A and -a: control agent forwarding
The -A option turns on SSH agent forwarding, and -a turns it off. These options are only
meaningful if you are using SSH.
See chapter 9 for general information on Pageant, and section 9.4 for information on agent
forwarding. Note that there is a security risk involved with enabling this option; see section 9.5
for details.
These options are equivalent to the agent forwarding checkbox in the Auth panel of the PuTTY
configuration box (see section 4.18.3).
These options are not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.10: -X and -x: control X11 forwarding
The -X option turns on X11 forwarding in SSH, and -x turns it off. These options are only
meaningful if you are using SSH.
For information on X11 forwarding, see section 3.4.
These options are equivalent to the X11 forwarding checkbox in the Tunnels panel of the PuTTY
configuration box (see section 4.19.1).
These options are not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.11: -t and -T: control pseudo-terminal allocation
The -t option ensures PuTTY attempts to allocate a pseudo-terminal at the server, and -T stops
it from allocating one. These options are only meaningful if you are using SSH.
These options are equivalent to the ‘Don't allocate a pseudo-terminal’ checkbox in the SSH panel
of the PuTTY configuration box (see section 4.17.2).
These options are not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.12: -N: suppress starting a shell or command
The -N option prevents PuTTY from attempting to start a shell or command on the remote
server. You might want to use this option if you are only using the SSH connection for port
forwarding, and your user account on the server does not have the ability to run a shell.
This feature is only available in SSH protocol version 2 (since the version 1 protocol assumes
you will always want to run a shell).
This option is equivalent to the ‘Don't start a shell or command at all’ checkbox in the SSH panel
of the PuTTY configuration box (see section 4.17.3).
This option is not available in the file transfer tools PSCP and PSFTP.

Section 3.7.3.13: -C: enable compression
The -C option enables compression of the data sent across the network. This option is only
meaningful if you are using SSH.
This option is equivalent to the ‘Enable compression’ checkbox in the SSH panel of the PuTTY
configuration box (see section 4.17.4).

Section 3.7.3.14: -1 and -2: specify an SSH protocol version
The -1 and -2 options force PuTTY to use version 1 or version 2 of the SSH protocol. These
options are only meaningful if you are using SSH.
These options are equivalent to selecting your preferred SSH protocol version as ‘1 only’ or ‘2
only’ in the SSH panel of the PuTTY configuration box (see section 4.17.5).

Section 3.7.3.15: -i: specify an SSH private key
The -i option allows you to specify the name of a private key file in *.PPK format which
PuTTY will use to authenticate with the server. This option is only meaningful if you are using
SSH.
For general information on public-key authentication, see chapter 8.
This option is equivalent to the ‘Private key file for authentication’ box in the Auth panel of the
PuTTY configuration box (see section 4.18.5).

Chapter 4: Configuring PuTTY
This chapter describes all the configuration options in PuTTY.
PuTTY is configured using the control panel that comes up before you start a session. Some
options can also be changed in the middle of a session, by selecting ‘Change Settings’ from the
window menu.
Section 4.1: The Session panel
Section 4.2: The Logging panel
Section 4.3: The Terminal panel
Section 4.4: The Keyboard panel
Section 4.5: The Bell panel
Section 4.6: The Features panel
Section 4.7: The Window panel
Section 4.8: The Appearance panel
Section 4.9: The Behaviour panel
Section 4.10: The Translation panel
Section 4.11: The Selection panel
Section 4.12: The Colours panel
Section 4.13: The Connection panel
Section 4.14: The Proxy panel
Section 4.15: The Telnet panel
Section 4.16: The Rlogin panel
Section 4.17: The SSH panel
Section 4.18: The Auth panel
Section 4.19: The Tunnels panel
Section 4.20: The Bugs panel
Section 4.21: Storing configuration in a file

Section 4.1: The Session panel
The Session configuration panel contains the basic options you need to specify in order to open a
session at all, and also allows you to save your settings to be reloaded later.
Section 4.1.1: The host name section
Section 4.1.2: Loading and storing saved sessions
Section 4.1.3: ‘Close Window on Exit’

Section 4.1.1: The host name section
The top box on the Session panel, labelled ‘Specify your connection by host name’, contains the
details that need to be filled in before PuTTY can open a session at all.

• The ‘Host Name’ box is where you type the name, or the IP address, of the server you
want to connect to.

• The ‘Protocol’ radio buttons let you choose what type of connection you want to make: a
raw connection, a Telnet connection, an rlogin connection or an SSH connection. (See
section 1.2 for a summary of the differences between SSH, Telnet and rlogin, and section
3.6 for an explanation of ‘raw’ connections.)

• The ‘Port’ box lets you specify which port number on the server to connect to. If you
select Telnet, Rlogin, or SSH, this box will be filled in automatically to the usual value,
and you will only need to change it if you have an unusual server. If you select Raw
mode, you will almost certainly need to fill in the ‘Port’ box.

Section 4.1.2: Loading and storing saved sessions
The next part of the Session configuration panel allows you to save your preferred PuTTY
options so they will appear automatically the next time you start PuTTY. It also allows you to
create saved sessions, which contain a full set of configuration options plus a host name and
protocol. A saved session contains all the information PuTTY needs to start exactly the session
you want.

• To save your default settings: first set up the settings the way you want them saved. Then
come back to the Session panel. Select the ‘Default Settings’ entry in the saved sessions
list, with a single click. Then press the ‘Save’ button.

Note that PuTTY does not allow you to save a host name into the Default Settings entry. This
ensures that when PuTTY is started up, the host name box is always empty, so a user can always
just type in a host name and connect.
If there is a specific host you want to store the details of how to connect to, you should create a
saved session, which will be separate from the Default Settings.

• To save a session: first go through the rest of the configuration box setting up all the
options you want. Then come back to the Session panel. Enter a name for the saved
session in the ‘Saved Sessions’ input box. (The server name is often a good choice for a
saved session name.) Then press the ‘Save’ button. Your saved session name should now
appear in the list box.

• To reload a saved session: single-click to select the session name in the list box, and then
press the ‘Load’ button. Your saved settings should all appear in the configuration panel.

• To modify a saved session: first load it as described above. Then make the changes you
want. Come back to the Session panel, and press the ‘Save’ button. The new settings will
be saved over the top of the old ones
To save the new settings under a different name, you can enter the new name in the
‘Saved Sessions’ box, or single-click to select a session name in the list box to overwrite
that session. To save ‘Default Settings’, you must single-click the name before saving.

• To start a saved session immediately: double-click on the session name in the list box.
• To delete a saved session: single-click to select the session name in the list box, and then

press the ‘Delete’ button.
Each saved session is independent of the Default Settings configuration. If you change your
preferences and update Default Settings, you must also update every saved session separately.
Saved sessions are stored in the Registry, at the location
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions
If you need to store them in a file, you could try the method described in section 4.21.

Section 4.1.3: ‘Close Window on Exit’
Finally in the Session panel, there is an option labelled ‘Close Window on Exit’. This controls
whether the PuTTY session window disappears as soon as the session inside it terminates. If you
are likely to want to copy and paste text out of the session after it has terminated, or restart the
session, you should arrange for this option to be off.
‘Close Window On Exit’ has three settings. ‘Always’ means always close the window on exit;
‘Never’ means never close on exit (always leave the window open, but inactive). The third
setting, and the default one, is ‘Only on clean exit’. In this mode, a session which terminates
normally will cause its window to close, but one which is aborted unexpectedly by network
trouble or a confusing message from the server will leave the window up.

Section 4.2: The Logging panel
The Logging configuration panel allows you to save log files of your PuTTY sessions, for
debugging, analysis or future reference.
The main option is a radio-button set that specifies whether PuTTY will log anything at all. The
options are

• ‘Logging turned off completely’. This is the default option; in this mode PuTTY will not
create a log file at all.

• ‘Log printable output only’. In this mode, a log file will be created and written to, but
only printable text will be saved into it. The various terminal control codes that are
typically sent down an interactive session alongside the printable text will be omitted.
This might be a useful mode if you want to read a log file in a text editor and hope to be
able to make sense of it.

• ‘Log all session output’. In this mode, everything sent by the server into your terminal
session is logged. If you view the log file in a text editor, therefore, you may well find it
full of strange control characters. This is a particularly useful mode if you are
experiencing problems with PuTTY's terminal handling: you can record everything that
went to the terminal, so that someone else can replay the session later in slow motion and
watch to see what went wrong.

• ‘Log SSH packet data’. In this mode (which is only used by SSH connections), the SSH
message packets sent over the encrypted connection are written to the log file. You might
need this to debug a network-level problem, or more likely to send to the PuTTY authors
as part of a bug report. BE WARNED that if you log in using a password, the password
can appear in the log file; see section 4.2.3 for options that may help to remove sensitive
material from the log file before you send it to anyone else.

Section 4.2.1: ‘Log file name’
Section 4.2.2: ‘What to do if the log file already exists’
Section 4.2.3: Options specific to SSH packet logging

Section 4.2.1: ‘Log file name’
In this edit box you enter the name of the file you want to log the session to. The ‘Browse’ button
will let you look around your file system to find the right place to put the file; or if you already
know exactly where you want it to go, you can just type a pathname into the edit box.
There are a few special features in this box. If you use the & character in the file name box,
PuTTY will insert details of the current session in the name of the file it actually opens. The
precise replacements it will do are:

• &Y will be replaced by the current year, as four digits.

• &M will be replaced by the current month, as two digits.

• &D will be replaced by the current day of the month, as two digits.

• &T will be replaced by the current time, as six digits (HHMMSS) with no punctuation.

• &H will be replaced by the host name you are connecting to.

For example, if you enter the host name c:\puttylogs\log-&h-&y&m&d-&t.dat, you
will end up with files looking like
log-server1.example.com-20010528-110859.dat
log-unixbox.somewhere.org-20010611-221001.dat

Section 4.2.2: ‘What to do if the log file already exists’
This control allows you to specify what PuTTY should do if it tries to start writing to a log file
and it finds the file already exists. You might want to automatically destroy the existing log file
and start a new one with the same name. Alternatively, you might want to open the existing log
file and add data to the end of it. Finally (the default option), you might not want to have any
automatic behaviour, but to ask the user every time the problem comes up.

Section 4.2.3: Options specific to SSH packet logging
These options only apply if SSH packet data is being logged.
The following options allow particularly sensitive portions of unencrypted packets to be
automatically left out of the log file. They are only intended to deter casual nosiness; an attacker
could glean a lot of useful information from even these obfuscated logs (e.g., length of
password).
Section 4.2.3.1: ‘Omit known password fields’
Section 4.2.3.2: ‘Omit session data’

Section 4.2.3.1: ‘Omit known password fields’
When checked, password fields are removed from the log of transmitted packets. (This includes
any user responses to challenge-response authentication methods such as ‘keyboard-interactive’.)
This does not include X11 authentication data if using X11 forwarding.
Note that this will only omit data that PuTTY knows to be a password. However, if you start
another login session within your PuTTY session, for instance, any password used will appear in
the clear in the packet log. The next option may be of use to protect against this.
This option is enabled by default.

Section 4.2.3.2: ‘Omit session data’
When checked, all ‘session data’ is omitted; this is defined as data in terminal sessions and in
forwarded channels (TCP, X11, and authentication agent). This will usually substantially reduce
the size of the resulting log file.
This option is disabled by default.

Section 4.3: The Terminal panel
The Terminal configuration panel allows you to control the behaviour of PuTTY's terminal
emulation.
Section 4.3.1: ‘Auto wrap mode initially on’
Section 4.3.2: ‘DEC Origin Mode initially on’
Section 4.3.3: ‘Implicit CR in every LF’
Section 4.3.4: ‘Use background colour to erase screen’
Section 4.3.5: ‘Enable blinking text’
Section 4.3.6: ‘Answerback to ^E’
Section 4.3.7: ‘Local echo’
Section 4.3.8: ‘Local line editing’
Section 4.3.9: Remote-controlled printing

Section 4.3.1: ‘Auto wrap mode initially on’
Auto wrap mode controls what happens when text printed in a PuTTY window reaches the right-
hand edge of the window.
With auto wrap mode on, if a long line of text reaches the right-hand edge, it will wrap over on to
the next line so you can still see all the text. With auto wrap mode off, the cursor will stay at the
right-hand edge of the screen, and all the characters in the line will be printed on top of each
other.
If you are running a full-screen application and you occasionally find the screen scrolling up
when it looks as if it shouldn't, you could try turning this option off.
Auto wrap mode can be turned on and off by control sequences sent by the server. This
configuration option controls the default state, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

Section 4.3.2: ‘DEC Origin Mode initially on’
DEC Origin Mode is a minor option which controls how PuTTY interprets cursor-position
control sequences sent by the server.
The server can send a control sequence that restricts the scrolling region of the display. For
example, in an editor, the server might reserve a line at the top of the screen and a line at the
bottom, and might send a control sequence that causes scrolling operations to affect only the
remaining lines.
With DEC Origin Mode on, cursor coordinates are counted from the top of the scrolling region.
With it turned off, cursor coordinates are counted from the top of the whole screen regardless of
the scrolling region.
It is unlikely you would need to change this option, but if you find a full-screen application is
displaying pieces of text in what looks like the wrong part of the screen, you could try turning
DEC Origin Mode on to see whether that helps.
DEC Origin Mode can be turned on and off by control sequences sent by the server. This
configuration option controls the default state, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

Section 4.3.3: ‘Implicit CR in every LF’
Most servers send two control characters, CR and LF, to start a new line of the screen. The CR
character makes the cursor return to the left-hand side of the screen. The LF character makes the
cursor move one line down (and might make the screen scroll).
Some servers only send LF, and expect the terminal to move the cursor over to the left
automatically. If you come across a server that does this, you will see a stepped effect on the
screen, like this:
First line of text
 Second line
 Third line
If this happens to you, try enabling the ‘Implicit CR in every LF’ option, and things might go
back to normal:
First line of text
Second line
Third line

Section 4.3.4: ‘Use background colour to erase screen’
Not all terminals agree on what colour to turn the screen when the server sends a ‘clear screen’
sequence. Some terminals believe the screen should always be cleared to the default background
colour. Others believe the screen should be cleared to whatever the server has selected as a
background colour.
There exist applications that expect both kinds of behaviour. Therefore, PuTTY can be
configured to do either.
With this option disabled, screen clearing is always done in the default background colour. With
this option enabled, it is done in the current background colour.
Background-colour erase can be turned on and off by control sequences sent by the server. This
configuration option controls the default state, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

Section 4.3.5: ‘Enable blinking text’
The server can ask PuTTY to display text that blinks on and off. This is very distracting, so
PuTTY allows you to turn blinking text off completely.
When blinking text is disabled and the server attempts to make some text blink, PuTTY will
instead display the text with a bolded background colour.
Blinking text can be turned on and off by control sequences sent by the server. This configuration
option controls the default state, which will be restored when you reset the terminal (see section
3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’, it will take
effect immediately.

Section 4.3.6: ‘Answerback to ^E’
This option controls what PuTTY will send back to the server if the server sends it the ^E
enquiry character. Normally it just sends the string ‘PuTTY’.
If you accidentally write the contents of a binary file to your terminal, you will probably find that
it contains more than one ^E character, and as a result your next command line will probably
read ‘PuTTYPuTTYPuTTY...’ as if you had typed the answerback string multiple times at the
keyboard. If you set the answerback string to be empty, this problem should go away, but doing
so might cause other problems.
Note that this is not the feature of PuTTY which the server will typically use to determine your
terminal type. That feature is the ‘Terminal-type string’ in the Connection panel; see section
4.13.1 for details.
You can include control characters in the answerback string using ^C notation. (Use ^~ to get a
literal ^.)

Section 4.3.7: ‘Local echo’
With local echo disabled, characters you type into the PuTTY window are not echoed in the
window by PuTTY. They are simply sent to the server. (The server might choose to echo them
back to you; this can't be controlled from the PuTTY control panel.)
Some types of session need local echo, and many do not. In its default mode, PuTTY will
automatically attempt to deduce whether or not local echo is appropriate for the session you are
working in. If you find it has made the wrong decision, you can use this configuration option to
override its choice: you can force local echo to be turned on, or force it to be turned off, instead
of relying on the automatic detection.

Section 4.3.8: ‘Local line editing’
Normally, every character you type into the PuTTY window is sent immediately to the server the
moment you type it.
If you enable local line editing, this changes. PuTTY will let you edit a whole line at a time
locally, and the line will only be sent to the server when you press Return. If you make a mistake,
you can use the Backspace key to correct it before you press Return, and the server will never see
the mistake.
Since it is hard to edit a line locally without being able to see it, local line editing is mostly used
in conjunction with local echo (section 4.3.7). This makes it ideal for use in raw mode or when
connecting to MUDs or talkers. (Although some more advanced MUDs do occasionally turn
local line editing on and turn local echo off, in order to accept a password from the user.)
Some types of session need local line editing, and many do not. In its default mode, PuTTY will
automatically attempt to deduce whether or not local line editing is appropriate for the session
you are working in. If you find it has made the wrong decision, you can use this configuration
option to override its choice: you can force local line editing to be turned on, or force it to be
turned off, instead of relying on the automatic detection.

Section 4.3.9: Remote-controlled printing
A lot of VT100-compatible terminals support printing under control of the remote server. PuTTY
supports this feature as well, but it is turned off by default.
To enable remote-controlled printing, choose a printer from the ‘Printer to send ANSI printer
output to’ drop-down list box. This should allow you to select from all the printers you have
installed drivers for on your computer. Alternatively, you can type the network name of a
networked printer (for example, \\printserver\printer1) even if you haven't already
installed a driver for it on your own machine.
When the remote server attempts to print some data, PuTTY will send that data to the printer raw
- without translating it, attempting to format it, or doing anything else to it. It is up to you to
ensure your remote server knows what type of printer it is talking to.
Since PuTTY sends data to the printer raw, it cannot offer options such as portrait versus
landscape, print quality, or paper tray selection. All these things would be done by your PC
printer driver (which PuTTY bypasses); if you need them done, you will have to find a way to
configure your remote server to do them.
To disable remote printing again, choose ‘None (printing disabled)’ from the printer selection
list. This is the default state.

Section 4.4: The Keyboard panel
The Keyboard configuration panel allows you to control the behaviour of the keyboard in
PuTTY.
Section 4.4.1: Changing the action of the Backspace key
Section 4.4.2: Changing the action of the Home and End keys
Section 4.4.3: Changing the action of the function keys and keypad
Section 4.4.4: Controlling Application Cursor Keys mode
Section 4.4.5: Controlling Application Keypad mode
Section 4.4.6: Using NetHack keypad mode
Section 4.4.7: Enabling a DEC-like Compose key
Section 4.4.8: ‘Control-Alt is different from AltGr’

Section 4.4.1: Changing the action of the Backspace key
Some terminals believe that the Backspace key should send the same thing to the server as
Control-H (ASCII code 8). Other terminals believe that the Backspace key should send ASCII
code 127 (usually known as Control-?) so that it can be distinguished from Control-H. This
option allows you to choose which code PuTTY generates when you press Backspace.
If you are connecting to a Unix system, you will probably find that the Unix stty command lets
you configure which the server expects to see, so you might not need to change which one
PuTTY generates. On other systems, the server's expectation might be fixed and you might have
no choice but to configure PuTTY.
If you do have the choice, we recommend configuring PuTTY to generate Control-? and
configuring the server to expect it, because that allows applications such as emacs to use
Control-H for help.
(Typing Shift-Backspace will cause PuTTY to send whichever code isn't configured here as the
default.)

Section 4.4.2: Changing the action of the Home and End keys
The Unix terminal emulator rxvt disagrees with the rest of the world about what character
sequences should be sent to the server by the Home and End keys.
xterm, and other terminals, send ESC [1~ for the Home key, and ESC [4~ for the End key.
rxvt sends ESC [H for the Home key and ESC [Ow for the End key.

If you find an application on which the Home and End keys aren't working, you could try
switching this option to see if it helps.

Section 4.4.3: Changing the action of the function keys and
keypad
This option affects the function keys (F1 to F12) and the top row of the numeric keypad.

• In the default mode, labelled ESC [n~, the function keys generate sequences like ESC
[11~, ESC [12~ and so on. This matches the general behaviour of Digital's terminals.

• In Linux mode, F6 to F12 behave just like the default mode, but F1 to F5 generate ESC
[[A through to ESC [[E. This mimics the Linux virtual console.

• In Xterm R6 mode, F5 to F12 behave like the default mode, but F1 to F4 generate ESC
OP through to ESC OS, which are the sequences produced by the top row of the keypad
on Digital's terminals.

• In VT400 mode, all the function keys behave like the default mode, but the actual top
row of the numeric keypad generates ESC OP through to ESC OS.

• In VT100+ mode, the function keys generate ESC OP through to ESC O[
• In SCO mode, the function keys F1 to F12 generate ESC [M through to ESC [X.

Together with shift, they generate ESC [Y through to ESC [j. With control they
generate ESC [k through to ESC [v, and with shift and control together they generate
ESC [w through to ESC [{.

If you don't know what any of this means, you probably don't need to fiddle with it.

Section 4.4.4: Controlling Application Cursor Keys mode
Application Cursor Keys mode is a way for the server to change the control sequences sent by
the arrow keys. In normal mode, the arrow keys send ESC [A through to ESC [D. In
application mode, they send ESC OA through to ESC OD.

Application Cursor Keys mode can be turned on and off by the server, depending on the
application. PuTTY allows you to configure the initial state.
You can also disable application cursor keys mode completely, using the ‘Features’ configuration
panel; see section 4.6.1.

Section 4.4.5: Controlling Application Keypad mode
Application Keypad mode is a way for the server to change the behaviour of the numeric keypad.
In normal mode, the keypad behaves like a normal Windows keypad: with NumLock on, the
number keys generate numbers, and with NumLock off they act like the arrow keys and Home,
End etc.
In application mode, all the keypad keys send special control sequences, including Num Lock.
Num Lock stops behaving like Num Lock and becomes another function key.
Depending on which version of Windows you run, you may find the Num Lock light still flashes
on and off every time you press Num Lock, even when application mode is active and Num Lock
is acting like a function key. This is unavoidable.
Application keypad mode can be turned on and off by the server, depending on the application.
PuTTY allows you to configure the initial state.
You can also disable application keypad mode completely, using the ‘Features’ configuration
panel; see section 4.6.1.

Section 4.4.6: Using NetHack keypad mode
PuTTY has a special mode for playing NetHack. You can enable it by selecting ‘NetHack’ in the
‘Initial state of numeric keypad’ control.
In this mode, the numeric keypad keys 1-9 generate the NetHack movement commands
(hjklyubn). The 5 key generates the . command (do nothing).

Better still, pressing Shift with the keypad keys generates the capital forms of the commands
(HJKLYUBN), which tells NetHack to keep moving you in the same direction until you encounter
something interesting.
For some reason, this feature only works properly when Num Lock is on. We don't know why.

Section 4.4.7: Enabling a DEC-like Compose key
DEC terminals have a Compose key, which provides an easy-to-remember way of typing
accented characters. You press Compose and then type two more characters. The two characters
are ‘combined’ to produce an accented character. The choices of character are designed to be
easy to remember; for example, composing ‘e’ and ‘`’ produces the ‘è’ character.
If your keyboard has a Windows Application key, it acts as a Compose key in PuTTY.
Alternatively, if you enable the ‘AltGr acts as Compose key’ option, the AltGr key will become a
Compose key.

Section 4.4.8: ‘Control-Alt is different from AltGr’
Some old keyboards do not have an AltGr key, which can make it difficult to type some
characters. PuTTY can be configured to treat the key combination Ctrl + Left Alt the same way
as the AltGr key.
By default, this checkbox is checked, and the key combination Ctrl + Left Alt does something
completely different. PuTTY's usual handling of the left Alt key is to prefix the Escape (Control-
[) character to whatever character sequence the rest of the keypress would generate. For
example, Alt-A generates Escape followed by a. So Alt-Ctrl-A would generate Escape, followed
by Control-A.
If you uncheck this box, Ctrl-Alt will become a synonym for AltGr, so you can use it to type
extra graphic characters if your keyboard has any.
(However, Ctrl-Alt will never act as a Compose key, regardless of the setting of ‘AltGr acts as
Compose key’ described in section 4.4.7.)

Section 4.5: The Bell panel
The Bell panel controls the terminal bell feature: the server's ability to cause PuTTY to beep at
you.
In the default configuration, when the server sends the character with ASCII code 7 (Control-G),
PuTTY will play the Windows Default Beep sound. This is not always what you want the
terminal bell feature to do; the Bell panel allows you to configure alternative actions.
Section 4.5.1: ‘Set the style of bell’
Section 4.5.2: ‘Taskbar/caption indication on bell’
Section 4.5.3: ‘Control the bell overload behaviour’

Section 4.5.1: ‘Set the style of bell’
This control allows you to select various different actions to occur on a terminal bell:

• Selecting ‘None’ disables the bell completely. In this mode, the server can send as many
Control-G characters as it likes and nothing at all will happen.

• ‘Make default system alert sound’ is the default setting. It causes the Windows ‘Default
Beep’ sound to be played. To change what this sound is, or to test it if nothing seems to
be happening, use the Sound configurer in the Windows Control Panel.

• ‘Visual bell’ is a silent alternative to a beeping computer. In this mode, when the server
sends a Control-G, the whole PuTTY window will flash white for a fraction of a second.

• ‘Beep using the PC speaker’ is self-explanatory.
• ‘Play a custom sound file’ allows you to specify a particular sound file to be used by

PuTTY alone, or even by a particular individual PuTTY session. This allows you to
distinguish your PuTTY beeps from any other beeps on the system. If you select this
option, you will also need to enter the name of your sound file in the edit control ‘Custom
sound file to play as a bell’.

Section 4.5.2: ‘Taskbar/caption indication on bell’
This feature controls what happens to the PuTTY window's entry in the Windows Taskbar if a
bell occurs while the window does not have the input focus.
In the default state (‘Disabled’) nothing unusual happens.
If you select ‘Steady’, then when a bell occurs and the window is not in focus, the window's
Taskbar entry and its title bar will change colour to let you know that PuTTY session is asking
for your attention. The change of colour will persist until you select the window, so you can
leave several PuTTY windows minimised in your terminal, go away from your keyboard, and be
sure not to have missed any important beeps when you get back.
‘Flashing’ is even more eye-catching: the Taskbar entry will continuously flash on and off until
you select the window.

Section 4.5.3: ‘Control the bell overload behaviour’
A common user error in a terminal session is to accidentally run the Unix command cat (or
equivalent) on an inappropriate file type, such as an executable, image file, or ZIP file. This
produces a huge stream of non-text characters sent to the terminal, which typically includes a lot
of bell characters. As a result of this the terminal often doesn't stop beeping for ten minutes, and
everybody else in the office gets annoyed.
To try to avoid this behaviour, or any other cause of excessive beeping, PuTTY includes a bell
overload management feature. In the default configuration, receiving more than five bell
characters in a two-second period will cause the overload feature to activate. Once the overload
feature is active, further bells will have no effect at all, so the rest of your binary file will be sent
to the screen in silence. After a period of five seconds during which no further bells are received,
the overload feature will turn itself off again and bells will be re-enabled.
If you want this feature completely disabled, you can turn it off using the checkbox ‘Bell is
temporarily disabled when over-used’.
Alternatively, if you like the bell overload feature but don't agree with the settings, you can
configure the details: how many bells constitute an overload, how short a time period they have
to arrive in to do so, and how much silent time is required before the overload feature will
deactivate itself.
Bell overload mode is always deactivated by any keypress in the terminal. This means it can
respond to large unexpected streams of data, but does not interfere with ordinary command-line
activities that generate beeps (such as filename completion).

Section 4.6: The Features panel
PuTTY's terminal emulation is very highly featured, and can do a lot of things under remote
server control. Some of these features can cause problems due to buggy or strangely configured
server applications.
The Features configuration panel allows you to disable some of PuTTY's more advanced
terminal features, in case they cause trouble.
Section 4.6.1: Disabling application keypad and cursor keys
Section 4.6.2: Disabling xterm -style mouse reporting
Section 4.6.3: Disabling remote terminal resizing
Section 4.6.4: Disabling switching to the alternate screen
Section 4.6.5: Disabling remote window title changing
Section 4.6.6: Disabling remote window title querying
Section 4.6.7: Disabling destructive backspace
Section 4.6.8: Disabling remote character set configuration

Section 4.6.1: Disabling application keypad and cursor keys
Application keypad mode (see section 4.4.5) and application cursor keys mode (see section
4.4.4) alter the behaviour of the keypad and cursor keys. Some applications enable these modes
but then do not deal correctly with the modified keys. You can force these modes to be
permanently disabled no matter what the server tries to do.

Section 4.6.2: Disabling xterm-style mouse reporting
PuTTY allows the server to send control codes that let it take over the mouse and use it for
purposes other than copy and paste. Applications which use this feature include the text-mode
web browser links, the Usenet newsreader trn version 4, and the file manager mc (Midnight
Commander).
If you find this feature inconvenient, you can disable it using the ‘Disable xterm-style mouse
reporting’ control. With this box ticked, the mouse will always do copy and paste in the normal
way.
Note that even if the application takes over the mouse, you can still manage PuTTY's copy and
paste by holding down the Shift key while you select and paste, unless you have deliberately
turned this feature off (see section 4.11.3).

Section 4.6.3: Disabling remote terminal resizing
PuTTY has the ability to change the terminal's size and position in response to commands from
the server. If you find PuTTY is doing this unexpectedly or inconveniently, you can tell PuTTY
not to respond to those server commands.

Section 4.6.4: Disabling switching to the alternate screen
Many terminals, including PuTTY, support an ‘alternate screen’. This is the same size as the
ordinary terminal screen, but separate. Typically a screen-based program such as a text editor
might switch the terminal to the alternate screen before starting up. Then at the end of the run, it
switches back to the primary screen, and you see the screen contents just as they were before
starting the editor.
Some people prefer this not to happen. If you want your editor to run in the same screen as the
rest of your terminal activity, you can disable the alternate screen feature completely.

Section 4.6.5: Disabling remote window title changing
PuTTY has the ability to change the window title in response to commands from the server. If
you find PuTTY is doing this unexpectedly or inconveniently, you can tell PuTTY not to respond
to those server commands.

Section 4.6.6: Disabling remote window title querying
PuTTY can optionally provide the xterm service of allowing server applications to find out the
local window title. This feature is disabled by default, but you can turn it on if you really want it.
NOTE that this feature is a potential security hazard. If a malicious application can write data to
your terminal (for example, if you merely cat a file owned by someone else on the server
machine), it can change your window title (unless you have disabled this as mentioned in section
4.6.5) and then use this service to have the new window title sent back to the server as if typed at
the keyboard. This allows an attacker to fake keypresses and potentially cause your server-side
applications to do things you didn't want. Therefore this feature is disabled by default, and we
recommend you do not turn it on unless you really know what you are doing.

Section 4.6.7: Disabling destructive backspace
Normally, when PuTTY receives character 127 (^?) from the server, it will perform a ‘destructive
backspace’: move the cursor one space left and delete the character under it. This can apparently
cause problems in some applications, so PuTTY provides the ability to configure character 127
to perform a normal backspace (without deleting a character) instead.

Section 4.6.8: Disabling remote character set configuration
PuTTY has the ability to change its character set configuration in response to commands from
the server. Some programs send these commands unexpectedly or inconveniently. In particular,
BitchX (an IRC client) seems to have a habit of reconfiguring the character set to something
other than the user intended.
If you find that accented characters are not showing up the way you expect them to, particularly
if you're running BitchX, you could try disabling the remote character set configuration
commands.

Section 4.7: The Window panel
The Window configuration panel allows you to control aspects of the PuTTY window.
Section 4.7.1: Setting the size of the PuTTY window
Section 4.7.2: What to do when the window is resized
Section 4.7.3: Controlling scrollback
Section 4.7.4: ‘Push erased text into scrollback’

Section 4.7.1: Setting the size of the PuTTY window
The ‘Rows’ and ‘Columns’ boxes let you set the PuTTY window to a precise size. Of course you
can also drag the window to a new size while a session is running.

Section 4.7.2: What to do when the window is resized
These options allow you to control what happens when the user tries to resize the PuTTY
window using its window furniture.
There are four options here:

• ‘Change the number of rows and columns’: the font size will not change. (This is the
default.)

• ‘Change the size of the font’: the number of rows and columns in the terminal will stay
the same, and the font size will change.

• ‘Change font size when maximised’: when the window is resized, the number of rows
and columns will change, except when the window is maximised (or restored), when the
font size will change.

• ‘Forbid resizing completely’: the terminal will refuse to be resized at all.

Section 4.7.3: Controlling scrollback
These options let you configure the way PuTTY keeps text after it scrolls off the top of the
screen (see section 3.1.2).
The ‘Lines of scrollback’ box lets you configure how many lines of text PuTTY keeps. The
‘Display scrollbar’ options allow you to hide the scrollbar (although you can still view the
scrollback using the keyboard as described in section 3.1.2). You can separately configure
whether the scrollbar is shown in full-screen mode and in normal modes.
If you are viewing part of the scrollback when the server sends more text to PuTTY, the screen
will revert to showing the current terminal contents. You can disable this behaviour by turning
off ‘Reset scrollback on display activity’. You can also make the screen revert when you press a
key, by turning on ‘Reset scrollback on keypress’.

Section 4.7.4: ‘Push erased text into scrollback’
When this option is enabled, the contents of the terminal screen will be pushed into the
scrollback when a server-side application clears the screen, so that your scrollback will contain a
better record of what was on your screen in the past.
If the application switches to the alternate screen (see section 4.6.4 for more about this), then the
contents of the primary screen will be visible in the scrollback until the application switches back
again.
This option is enabled by default.

Section 4.8: The Appearance panel
The Appearance configuration panel allows you to control aspects of the appearance of PuTTY's
window.
Section 4.8.1: Controlling the appearance of the cursor
Section 4.8.2: Controlling the font used in the terminal window
Section 4.8.3: ‘Hide mouse pointer when typing in window’
Section 4.8.4: Controlling the window border

Section 4.8.1: Controlling the appearance of the cursor
The ‘Cursor appearance’ option lets you configure the cursor to be a block, an underline, or a
vertical line. A block cursor becomes an empty box when the window loses focus; an underline
or a vertical line becomes dotted.
The ‘Cursor blinks’ option makes the cursor blink on and off. This works in any of the cursor
modes.

Section 4.8.2: Controlling the font used in the terminal window
This option allows you to choose what font, in what size, the PuTTY terminal window uses to
display the text in the session. You will be offered a choice from all the fixed-width fonts
installed on the system. (VT100-style terminal handling can only deal with fixed- width fonts.)

Section 4.8.3: ‘Hide mouse pointer when typing in window’
If you enable this option, the mouse pointer will disappear if the PuTTY window is selected and
you press a key. This way, it will not obscure any of the text in the window while you work in
your session. As soon as you move the mouse, the pointer will reappear.
This option is disabled by default, so the mouse pointer remains visible at all times.

Section 4.8.4: Controlling the window border
PuTTY allows you to configure the appearance of the window border to some extent.
The checkbox marked ‘Sunken-edge border’ changes the appearance of the window border to
something more like a DOS box: the inside edge of the border is highlighted as if it sank down to
meet the surface inside the window. This makes the border a little bit thicker as well. It's hard to
describe well. Try it and see if you like it.
You can also configure a completely blank gap between the text in the window and the border,
using the ‘Gap between text and window edge’ control. By default this is set at one pixel. You
can reduce it to zero, or increase it further.

Section 4.9: The Behaviour panel
The Behaviour configuration panel allows you to control aspects of the behaviour of PuTTY's
window.
Section 4.9.1: Controlling the window title
Section 4.9.2: ‘Warn before closing window’
Section 4.9.3: ‘Window closes on ALT-F4’
Section 4.9.4: ‘System menu appears on ALT-Space’
Section 4.9.5: ‘System menu appears on Alt alone’
Section 4.9.6: ‘Ensure window is always on top’
Section 4.9.7: ‘Full screen on Alt-Enter’

Section 4.9.1: Controlling the window title
The ‘Window title’ edit box allows you to set the title of the PuTTY window. By default the
window title will contain the host name followed by ‘PuTTY’, for example
server1.example.com - PuTTY. If you want a different window title, this is where to set
it.
PuTTY allows the server to send xterm control sequences which modify the title of the window
in mid-session (unless this is disabled - see section 4.6.5); the title string set here is therefore
only the initial window title.
As well as the window title, there is also an xterm sequence to modify the title of the window's
icon. This makes sense in a windowing system where the window becomes an icon when
minimised, such as Windows 3.1 or most X Window System setups; but in the Windows 95-like
user interface it isn't as applicable.
By default, PuTTY only uses the server-supplied window title, and ignores the icon title entirely.
If for some reason you want to see both titles, check the box marked ‘Separate window and icon
titles’. If you do this, PuTTY's window title and Taskbar caption will change into the server-
supplied icon title if you minimise the PuTTY window, and change back to the server-supplied
window title if you restore it. (If the server has not bothered to supply a window or icon title,
none of this will happen.)

Section 4.9.2: ‘Warn before closing window’
If you press the Close button in a PuTTY window that contains a running session, PuTTY will
put up a warning window asking if you really meant to close the window. A window whose
session has already terminated can always be closed without a warning.
If you want to be able to close a window quickly, you can disable the ‘Warn before closing
window’ option.

Section 4.9.3: ‘Window closes on ALT-F4’
By default, pressing ALT-F4 causes the window to close (or a warning box to appear; see section
4.9.2). If you disable the ‘Window closes on ALT-F4’ option, then pressing ALT-F4 will simply
send a key sequence to the server.

Section 4.9.4: ‘System menu appears on ALT-Space’
If this option is enabled, then pressing ALT-Space will bring up the PuTTY window's menu, like
clicking on the top left corner. If it is disabled, then pressing ALT-Space will just send ESC
SPACE to the server.

Some accessibility programs for Windows may need this option enabling to be able to control
PuTTY's window successfully. For instance, Dragon NaturallySpeaking requires it both to open
the system menu via voice, and to close, minimise, maximise and restore the window.

Section 4.9.5: ‘System menu appears on Alt alone’
If this option is enabled, then pressing and releasing ALT will bring up the PuTTY window's
menu, like clicking on the top left corner. If it is disabled, then pressing and releasing ALT will
have no effect.

Section 4.9.6: ‘Ensure window is always on top’
If this option is enabled, the PuTTY window will stay on top of all other windows.

Section 4.9.7: ‘Full screen on Alt-Enter’
If this option is enabled, then pressing Alt-Enter will cause the PuTTY window to become full-
screen. Pressing Alt-Enter again will restore the previous window size.
The full-screen feature is also available from the System menu, even when it is configured not to
be available on the Alt-Enter key. See section 3.1.3.7.

Section 4.10: The Translation panel
The Translation configuration panel allows you to control the translation between the character
set understood by the server and the character set understood by PuTTY.
Section 4.10.1: Controlling character set translation
Section 4.10.2: ‘Caps Lock acts as Cyrillic switch’
Section 4.10.3: Controlling display of line drawing characters
Section 4.10.4: Controlling copy and paste of line drawing characters

Section 4.10.1: Controlling character set translation
During an interactive session, PuTTY receives a stream of 8-bit bytes from the server, and in
order to display them on the screen it needs to know what character set to interpret them in.
There are a lot of character sets to choose from. The ‘Received data assumed to be in which
character set’ option lets you select one. By default PuTTY will attempt to choose a character set
that is right for your locale as reported by Windows; if it gets it wrong, you can select a different
one using this control.
A few notable character sets are:

• The ISO-8859 series are all standard character sets that include various accented
characters appropriate for different sets of languages.

• The Win125x series are defined by Microsoft, for similar purposes. In particular Win1252
is almost equivalent to ISO-8859-1, but contains a few extra characters such as matched
quotes and the Euro symbol.

• If you want the old IBM PC character set with block graphics and line-drawing
characters, you can select ‘CP437’.

• PuTTY also supports Unicode mode, in which the data coming from the server is
interpreted as being in the UTF-8 encoding of Unicode. If you select ‘UTF-8’ as a
character set you can use this mode. Not all server-side applications will support it.

If you need support for a numeric code page which is not listed in the drop-down list, such as
code page 866, then you can try entering its name manually (CP866 for example) in the list box.
If the underlying version of Windows has the appropriate translation table installed, PuTTY will
use it.

Section 4.10.2: ‘Caps Lock acts as Cyrillic switch’
This feature allows you to switch between a US/UK keyboard layout and a Cyrillic keyboard
layout by using the Caps Lock key, if you need to type (for example) Russian and English side
by side in the same document.
Currently this feature is not expected to work properly if your native keyboard layout is not US
or UK.

Section 4.10.3: Controlling display of line drawing characters
VT100-series terminals allow the server to send control sequences that shift temporarily into a
separate character set for drawing simple lines and boxes. However, there are a variety of ways
in which PuTTY can attempt to find appropriate characters, and the right one to use depends on
the locally configured font. In general you should probably try lots of options until you find one
that your particular font supports.

• ‘Use Unicode line drawing code points’ tries to use the box characters that are present in
Unicode. For good Unicode-supporting fonts this is probably the most reliable and
functional option.

• ‘Poor man's line drawing’ assumes that the font cannot generate the line and box
characters at all, so it will use the +, - and | characters to draw approximations to boxes.
You should use this option if none of the other options works.

• ‘Font has XWindows encoding’ is for use with fonts that have a special encoding, where
the lowest 32 character positions (below the ASCII printable range) contain the line-
drawing characters. This is unlikely to be the case with any standard Windows font; it
will probably only apply to custom-built fonts or fonts that have been automatically
converted from the X Window System.

• ‘Use font in both ANSI and OEM modes’ tries to use the same font in two different
character sets, to obtain a wider range of characters. This doesn't always work; some
fonts claim to be a different size depending on which character set you try to use.

• ‘Use font in OEM mode only’ is more reliable than that, but can miss out other characters
from the main character set.

Section 4.10.4: Controlling copy and paste of line drawing
characters
By default, when you copy and paste a piece of the PuTTY screen that contains VT100 line and
box drawing characters, PuTTY will paste them in the form they appear on the screen: either
Unicode line drawing code points, or the ‘poor man's’ line-drawing characters +, - and |. The
checkbox ‘Copy and paste VT100 line drawing chars as lqqqk’ disables this feature, so line-
drawing characters will be pasted as the ASCII characters that were printed to produce them.
This will typically mean they come out mostly as q and x, with a scattering of jklmntuvw at
the corners. This might be useful if you were trying to recreate the same box layout in another
program, for example.
Note that this option only applies to line-drawing characters which were printed by using the
VT100 mechanism. Line-drawing characters that were received as Unicode code points will
paste as Unicode always.

Section 4.11: The Selection panel
The Selection panel allows you to control the way copy and paste work in the PuTTY window.
Section 4.11.1: Pasting in Rich Text Format
Section 4.11.2: Changing the actions of the mouse buttons
Section 4.11.3: ‘Shift overrides application's use of mouse’
Section 4.11.4: Default selection mode
Section 4.11.5: Configuring word-by-word selection

Section 4.11.1: Pasting in Rich Text Format
If you enable ‘Paste to clipboard in RTF as well as plain text’, PuTTY will write formatting
information to the clipboard as well as the actual text you copy. Currently the only effect of this
will be that if you paste into (say) a word processor, the text will appear in the word processor in
the same font PuTTY was using to display it. In future it is likely that other formatting
information (bold, underline, colours) will be copied as well.
This option can easily be inconvenient, so by default it is disabled.

Section 4.11.2: Changing the actions of the mouse buttons
PuTTY's copy and paste mechanism is by default modelled on the Unix xterm application. The
X Window System uses a three-button mouse, and the convention is that the left button selects,
the right button extends an existing selection, and the middle button pastes.
Windows often only has two mouse buttons, so in PuTTY's default configuration
(‘Compromise’), the right button pastes, and the middle button (if you have one) extends a
selection.
If you have a three-button mouse and you are already used to the xterm arrangement, you can
select it using the ‘Action of mouse buttons’ control.
Alternatively, with the ‘Windows’ option selected, the middle button extends, and the right
button brings up a context menu (on which one of the options is ‘Paste’). (This context menu is
always available by holding down Ctrl and right-clicking, regardless of the setting of this
option.)

Section 4.11.3: ‘Shift overrides application's use of mouse’
PuTTY allows the server to send control codes that let it take over the mouse and use it for
purposes other than copy and paste. Applications which use this feature include the text-mode
web browser links, the Usenet newsreader trn version 4, and the file manager mc (Midnight
Commander).
When running one of these applications, pressing the mouse buttons no longer performs copy
and paste. If you do need to copy and paste, you can still do so if you hold down Shift while you
do your mouse clicks.
However, it is possible in theory for applications to even detect and make use of Shift + mouse
clicks. We don't know of any applications that do this, but in case someone ever writes one,
unchecking the ‘Shift overrides application's use of mouse’ checkbox will cause Shift + mouse
clicks to go to the server as well (so that mouse-driven copy and paste will be completely
disabled).
If you want to prevent the application from taking over the mouse at all, you can do this using
the Features control panel; see section 4.6.2.

Section 4.11.4: Default selection mode
As described in section 3.1.1, PuTTY has two modes of selecting text to be copied to the
clipboard. In the default mode (‘Normal’), dragging the mouse from point A to point B selects to
the end of the line containing A, all the lines in between, and from the very beginning of the line
containing B. In the other mode (‘Rectangular block’), dragging the mouse between two points
defines a rectangle, and everything within that rectangle is copied.
Normally, you have to hold down Alt while dragging the mouse to select a rectangular block.
Using the ‘Default selection mode’ control, you can set rectangular selection as the default, and
then you have to hold down Alt to get the normal behaviour.

Section 4.11.5: Configuring word-by-word selection
PuTTY will select a word at a time in the terminal window if you double-click to begin the drag.
This panel allows you to control precisely what is considered to be a word.
Each character is given a class, which is a small number (typically 0, 1 or 2). PuTTY considers a
single word to be any number of adjacent characters in the same class. So by modifying the
assignment of characters to classes, you can modify the word-by-word selection behaviour.
In the default configuration, the character classes are:

• Class 0 contains white space and control characters.
• Class 1 contains most punctuation.
• Class 2 contains letters, numbers and a few pieces of punctuation (the double quote,

minus sign, period, forward slash and underscore).
So, for example, if you assign the @ symbol into character class 2, you will be able to select an e-
mail address with just a double click.
In order to adjust these assignments, you start by selecting a group of characters in the list box.
Then enter a class number in the edit box below, and press the ‘Set’ button.
This mechanism currently only covers ASCII characters, because it isn't feasible to expand the
list to cover the whole of Unicode.
Character class definitions can be modified by control sequences sent by the server. This
configuration option controls the default state, which will be restored when you reset the terminal
(see section 3.1.3.6). However, if you modify this option in mid-session using ‘Change Settings’,
it will take effect immediately.

Section 4.12: The Colours panel
The Colours panel allows you to control PuTTY's use of colour.
Section 4.12.1: ‘Bolded text is a different colour’
Section 4.12.2: ‘Attempt to use logical palettes’
Section 4.12.3: ‘Use system colours’
Section 4.12.4: Adjusting the colours in the terminal window

Section 4.12.1: ‘Bolded text is a different colour’
When the server sends a control sequence indicating that some text should be displayed in bold,
PuTTY can handle this two ways. It can either change the font for a bold version, or use the same
font in a brighter colour. This control lets you choose which.
By default the box is checked, so non-bold text is displayed in light grey and bold text is
displayed in bright white (and similarly in other colours). If you uncheck the box, bold and non-
bold text will be displayed in the same colour, and instead the font will change to indicate the
difference.

Section 4.12.2: ‘Attempt to use logical palettes’
Logical palettes are a mechanism by which a Windows application running on an 8-bit colour
display can select precisely the colours it wants instead of going with the Windows standard
defaults.
If you are not getting the colours you ask for on an 8-bit display, you can try enabling this option.
However, be warned that it's never worked very well.

Section 4.12.3: ‘Use system colours’
Enabling this option will cause PuTTY to ignore the configured colours for ‘Default
Background/Foreground’ and ‘Cursor Colour/Text’ (see section 4.12.4), instead going with the
system-wide defaults.
Note that non-bold and bold text will be the same colour if this option is enabled. You might
want to change to indicating bold text by font changes (see section 4.12.1).

Section 4.12.4: Adjusting the colours in the terminal window
The main colour control allows you to specify exactly what colours things should be displayed
in. To modify one of the PuTTY colours, use the list box to select which colour you want to
modify. The RGB values for that colour will appear on the right-hand side of the list box. Now, if
you press the ‘Modify’ button, you will be presented with a colour selector, in which you can
choose a new colour to go in place of the old one.
PuTTY allows you to set the cursor colour, the default foreground and background, and the
precise shades of all the ANSI configurable colours (black, red, green, yellow, blue, magenta,
cyan, and white). You can also modify the precise shades used for the bold versions of these
colours; these are used to display bold text if you have selected ‘Bolded text is a different
colour’, and can also be used if the server asks specifically to use them. (Note that ‘Default Bold
Background’ is not the background colour used for bold text; it is only used if the server
specifically asks for a bold background.)

Section 4.13: The Connection panel
The Connection panel allows you to configure options that apply to more than one type of
connection.
Section 4.13.1: ‘Terminal-type string’
Section 4.13.2: ‘Terminal speeds’
Section 4.13.3: ‘Auto-login username’
Section 4.13.4: Setting environment variables on the server
Section 4.13.5: Using keepalives to prevent disconnection
Section 4.13.6: ‘Disable Nagle's algorithm’
Section 4.13.7: ‘Enable TCP keepalives’

Section 4.13.1: ‘Terminal-type string’
Most servers you might connect to with PuTTY are designed to be connected to from lots of
different types of terminal. In order to send the right control sequences to each one, the server
will need to know what type of terminal it is dealing with. Therefore, each of the SSH, Telnet
and Rlogin protocols allow a text string to be sent down the connection describing the terminal.
PuTTY attempts to emulate the Unix xterm program, and by default it reflects this by sending
xterm as a terminal-type string. If you find this is not doing what you want - perhaps the remote
system reports ‘Unknown terminal type’ - you could try setting this to something different, such
as vt220.

If you're not sure whether a problem is due to the terminal type setting or not, you probably need
to consult the manual for your application or your server.

Section 4.13.2: ‘Terminal speeds’
The Telnet, Rlogin, and SSH protocols allow the client to specify terminal speeds to the server.
This parameter does not affect the actual speed of the connection, which is always ‘as fast as
possible’; it is just a hint that is sometimes used by server software to modify its behaviour. For
instance, if a slow speed is indicated, the server may switch to a less bandwidth-hungry display
mode.
The value is usually meaningless in a network environment, but PuTTY lets you configure it, in
case you find the server is reacting badly to the default value.
The format is a pair of numbers separated by a comma, for instance, 38400,38400. The first
number represents the output speed (from the server) in bits per second, and the second is the
input speed (to the server). (Only the first is used in the Rlogin protocol.)
This option has no effect on Raw connections.

Section 4.13.3: ‘Auto-login username’
All three of the SSH, Telnet and Rlogin protocols allow you to specify what user name you want
to log in as, without having to type it explicitly every time. (Some Telnet servers don't support
this.)
In this box you can type that user name.

Section 4.13.4: Setting environment variables on the server
The Telnet protocol provides a means for the client to pass environment variables to the server.
Many Telnet servers have stopped supporting this feature due to security flaws, but PuTTY still
supports it for the benefit of any servers which have found other ways around the security
problems than just disabling the whole mechanism.
Version 2 of the SSH protocol also provides a similar mechanism, which is easier to implement
without security flaws. Newer SSH2 servers are more likely to support it than older ones.
This configuration data is not used in the SSHv1, rlogin or raw protocols.
To add an environment variable to the list transmitted down the connection, you enter the
variable name in the ‘Variable’ box, enter its value in the ‘Value’ box, and press the ‘Add’ button.
To remove one from the list, select it in the list box and press ‘Remove’.

Section 4.13.5: Using keepalives to prevent disconnection
If you find your sessions are closing unexpectedly (‘Connection reset by peer’) after they have
been idle for a while, you might want to try using this option.
Some network routers and firewalls need to keep track of all connections through them. Usually,
these firewalls will assume a connection is dead if no data is transferred in either direction after a
certain time interval. This can cause PuTTY sessions to be unexpectedly closed by the firewall if
no traffic is seen in the session for some time.
The keepalive option (‘Seconds between keepalives’) allows you to configure PuTTY to send
data through the session at regular intervals, in a way that does not disrupt the actual terminal
session. If you find your firewall is cutting idle connections off, you can try entering a non-zero
value in this field. The value is measured in seconds; so, for example, if your firewall cuts
connections off after ten minutes then you might want to enter 300 seconds (5 minutes) in the
box.
Note that keepalives are not always helpful. They help if you have a firewall which drops your
connection after an idle period; but if the network between you and the server suffers from
breaks in connectivity then keepalives can actually make things worse. If a session is idle, and
connectivity is temporarily lost between the endpoints, but the connectivity is restored before
either side tries to send anything, then there will be no problem - neither endpoint will notice that
anything was wrong. However, if one side does send something during the break, it will
repeatedly try to re-send, and eventually give up and abandon the connection. Then when
connectivity is restored, the other side will find that the first side doesn't believe there is an open
connection any more. Keepalives can make this sort of problem worse, because they increase the
probability that PuTTY will attempt to send data during a break in connectivity. Therefore, you
might find they help connection loss, or you might find they make it worse, depending on what
kind of network problems you have between you and the server.
Keepalives are only supported in Telnet and SSH; the Rlogin and Raw protocols offer no way of
implementing them. (For an alternative, see section 4.13.7.)
Note that if you are using SSH1 and the server has a bug that makes it unable to deal with SSH1
ignore messages (see section 4.20.1), enabling keepalives will have no effect.

Section 4.13.6: ‘Disable Nagle's algorithm’
Nagle's algorithm is a detail of TCP/IP implementations that tries to minimise the number of
small data packets sent down a network connection. With Nagle's algorithm enabled, PuTTY's
bandwidth usage will be slightly more efficient; with it disabled, you may find you get a faster
response to your keystrokes when connecting to some types of server.
The Nagle algorithm is disabled by default.

Section 4.13.7: ‘Enable TCP keepalives’
NOTE: TCP keepalives should not be confused with the application-level keepalives described in
section 4.13.5. If in doubt, you probably want application-level keepalives; TCP keepalives are
provided for completeness.
The idea of TCP keepalives is similar to application-level keepalives, and the same caveats
apply. The main differences are:

• TCP keepalives are available on all connection types, including Raw and Rlogin.
• The interval between TCP keepalives is usually much longer, typically two hours; this is

set by the operating system, and cannot be configured within PuTTY.
• If the operating system does not receive a response to a keepalive, it may send out more

in quick succession and if terminate the connection if no response is received.
TCP keepalives may be more useful for ensuring that half-open connections are terminated than
for keeping a connection alive.
TCP keepalives are disabled by default.

Section 4.14: The Proxy panel
The Proxy panel allows you to configure PuTTY to use various types of proxy in order to make
its network connections. The settings in this panel affect the primary network connection forming
your PuTTY session, but also any extra connections made as a result of SSH port forwarding
(see section 3.5).
Section 4.14.1: Setting the proxy type
Section 4.14.2: Excluding parts of the network from proxying
Section 4.14.3: Name resolution when using a proxy
Section 4.14.4: Username and password
Section 4.14.5: Specifying the Telnet proxy command

Section 4.14.1: Setting the proxy type
The ‘Proxy type’ radio buttons allow you to configure what type of proxy you want PuTTY to
use for its network connections. The default setting is ‘None’; in this mode no proxy is used for
any connection.

• Selecting ‘HTTP’ allows you to proxy your connections through a web server supporting
the HTTP CONNECT command, as documented in RFC 2817.

• Selecting ‘SOCKS 4’ or ‘SOCKS 5’ allows you to proxy your connections through a
SOCKS server.

• Many firewalls implement a less formal type of proxy in which a user can make a Telnet
connection directly to the firewall machine and enter a command such as connect
myhost.com 22 to connect through to an external host. Selecting ‘Telnet’ allows you
to tell PuTTY to use this type of proxy.

Section 4.14.2: Excluding parts of the network from proxying
Typically you will only need to use a proxy to connect to non-local parts of your network; for
example, your proxy might be required for connections outside your company's internal network.
In the ‘Exclude Hosts/IPs’ box you can enter ranges of IP addresses, or ranges of DNS names, for
which PuTTY will avoid using the proxy and make a direct connection instead.
The ‘Exclude Hosts/IPs’ box may contain more than one exclusion range, separated by commas.
Each range can be an IP address or a DNS name, with a * character allowing wildcards. For
example:
*.example.com
This excludes any host with a name ending in .example.com from proxying.
192.168.88.*
This excludes any host with an IP address starting with 192.168.88 from proxying.
192.168.88.*,*.example.com
This excludes both of the above ranges at once.
Connections to the local host (the host name localhost, and any loopback IP address) are
never proxied, even if the proxy exclude list does not explicitly contain them. It is very unlikely
that this behaviour would ever cause problems, but if it does you can change it by enabling
‘Consider proxying local host connections’.
Note that if you are doing DNS at the proxy (see section 4.14.3), you should make sure that your
proxy exclusion settings do not depend on knowing the IP address of a host. If the name is
passed on to the proxy without PuTTY looking it up, it will never know the IP address and
cannot check it against your list.

Section 4.14.3: Name resolution when using a proxy
If you are using a proxy to access a private network, it can make a difference whether DNS name
resolution is performed by PuTTY itself (on the client machine) or performed by the proxy.
The ‘Do DNS name lookup at proxy end’ configuration option allows you to control this. If you
set it to ‘No’, PuTTY will always do its own DNS, and will always pass an IP address to the
proxy. If you set it to ‘Yes’, PuTTY will always pass host names straight to the proxy without
trying to look them up first.
If you set this option to ‘Auto’ (the default), PuTTY will do something it considers appropriate
for each type of proxy. Telnet and HTTP proxies will have host names passed straight to them;
SOCKS proxies will not.
Note that if you are doing DNS at the proxy, you should make sure that your proxy exclusion
settings (see section 4.14.2) do not depend on knowing the IP address of a host. If the name is
passed on to the proxy without PuTTY looking it up, it will never know the IP address and
cannot check it against your list.
The original SOCKS 4 protocol does not support proxy-side DNS. There is a protocol extension
(SOCKS 4A) which does support it, but not all SOCKS 4 servers provide this extension. If you
enable proxy DNS and your SOCKS 4 server cannot deal with it, this might be why.

Section 4.14.4: Username and password
If your proxy requires authentication, you can enter a username and a password in the
‘Username’ and ‘Password’ boxes.
Note that if you save your session, the proxy password will be saved in plain text, so anyone who
can access your PuTTY configuration data will be able to discover it.
Authentication is not fully supported for all forms of proxy:

• Username and password authentication is supported for HTTP proxies and SOCKS 5
proxies.

• With SOCKS 5, authentication is via CHAP if the proxy supports it (this is not
supported in PuTTYtel); otherwise the password is sent to the proxy in plain text.

• With HTTP proxying, the only currently supported authentication method is
‘basic’, where the password is sent to the proxy in plain text.

• SOCKS 4 can use the ‘Username’ field, but does not support passwords.
• You can specify a way to include a username and password in the Telnet proxy command

(see section 4.14.5).

Section 4.14.5: Specifying the Telnet proxy command
If you are using the Telnet proxy type, the usual command required by the firewall's Telnet server
is connect, followed by a host name and a port number. If your proxy needs a different
command, you can enter an alternative here.
In this string, you can use \n to represent a new-line, \r to represent a carriage return, \t to
represent a tab character, and \x followed by two hex digits to represent any other character. \\
is used to encode the \ character itself.

Also, the special strings %host and %port will be replaced by the host name and port number
you want to connect to. The strings %user and %pass will be replaced by the proxy username
and password you specify. To get a literal % sign, enter %%.

If the Telnet proxy server prompts for a username and password before commands can be sent,
you can use a command such as:
%user\n%pass\nconnect %host %port\n
This will send your username and password as the first two lines to the proxy, followed by a
command to connect to the desired host and port. Note that if you do not include the %user or
%pass tokens in the Telnet command, then the ‘Username’ and ‘Password’ configuration fields
will be ignored.

Section 4.15: The Telnet panel
The Telnet panel allows you to configure options that only apply to Telnet sessions.
Section 4.15.1: ‘Handling of OLD_ENVIRON ambiguity’
Section 4.15.2: Passive and active Telnet negotiation modes
Section 4.15.3: ‘Keyboard sends Telnet special commands’
Section 4.15.4: ‘Return key sends Telnet New Line instead of ^M’

Section 4.15.1: ‘Handling of OLD_ENVIRON ambiguity’
The original Telnet mechanism for passing environment variables was badly specified. At the
time the standard (RFC 1408) was written, BSD telnet implementations were already supporting
the feature, and the intention of the standard was to describe the behaviour the BSD
implementations were already using.
Sadly there was a typing error in the standard when it was issued, and two vital function codes
were specified the wrong way round. BSD implementations did not change, and the standard was
not corrected. Therefore, it's possible you might find either BSD or RFC-compliant
implementations out there. This switch allows you to choose which one PuTTY claims to be.
The problem was solved by issuing a second standard, defining a new Telnet mechanism called
NEW_ENVIRON, which behaved exactly like the original OLD_ENVIRON but was not
encumbered by existing implementations. Most Telnet servers now support this, and it's
unambiguous. This feature should only be needed if you have trouble passing environment
variables to quite an old server.

Section 4.15.2: Passive and active Telnet negotiation modes
In a Telnet connection, there are two types of data passed between the client and the server:
actual text, and negotiations about which Telnet extra features to use.
PuTTY can use two different strategies for negotiation:

• In active mode, PuTTY starts to send negotiations as soon as the connection is opened.
• In passive mode, PuTTY will wait to negotiate until it sees a negotiation from the server.

The obvious disadvantage of passive mode is that if the server is also operating in a passive
mode, then negotiation will never begin at all. For this reason PuTTY defaults to active mode.
However, sometimes passive mode is required in order to successfully get through certain types
of firewall and Telnet proxy server. If you have confusing trouble with a firewall, you could try
enabling passive mode to see if it helps.

Section 4.15.3: ‘Keyboard sends Telnet special commands’
If this box is checked, several key sequences will have their normal actions modified:

• the Backspace key on the keyboard will send the Telnet special backspace code;
• Control-C will send the Telnet special Interrupt Process code;
• Control-Z will send the Telnet special Suspend Process code.

You probably shouldn't enable this unless you know what you're doing.

Section 4.15.4: ‘Return key sends Telnet New Line instead of ^M’
Unlike most other remote login protocols, the Telnet protocol has a special ‘new line’ code that is
not the same as the usual line endings of Control-M or Control-J. By default, PuTTY sends the
Telnet New Line code when you press Return, instead of sending Control-M as it does in most
other protocols.
Most Unix-style Telnet servers don't mind whether they receive Telnet New Line or Control-M;
some servers do expect New Line, and some servers prefer to see ^M. If you are seeing
surprising behaviour when you press Return in a Telnet session, you might try turning this option
off to see if it helps.

Section 4.16: The Rlogin panel
The Rlogin panel allows you to configure options that only apply to Rlogin sessions.
Section 4.16.1: ‘Local username’

Section 4.16.1: ‘Local username’
Rlogin allows an automated (password-free) form of login by means of a file called .rhosts
on the server. You put a line in your .rhosts file saying something like
jbloggs@pc1.example.com, and then when you make an Rlogin connection the client
transmits the username of the user running the Rlogin client. The server checks the username and
hostname against .rhosts, and if they match it does not ask for a password.

This only works because Unix systems contain a safeguard to stop a user from pretending to be
another user in an Rlogin connection. Rlogin connections have to come from port numbers below
1024, and Unix systems prohibit this to unprivileged processes; so when the server sees a
connection from a low-numbered port, it assumes the client end of the connection is held by a
privileged (and therefore trusted) process, so it believes the claim of who the user is.
Windows does not have this restriction: any user can initiate an outgoing connection from a low-
numbered port. Hence, the Rlogin .rhosts mechanism is completely useless for securely
distinguishing several different users on a Windows machine. If you have a .rhosts entry
pointing at a Windows PC, you should assume that anyone using that PC can spoof your
username in an Rlogin connection and access your account on the server.
The ‘Local username’ control allows you to specify what user name PuTTY should claim you
have, in case it doesn't match your Windows user name (or in case you didn't bother to set up a
Windows user name).

Section 4.17: The SSH panel
The SSH panel allows you to configure options that only apply to SSH sessions.
Section 4.17.1: Executing a specific command on the server
Section 4.17.2: ‘Don't allocate a pseudo-terminal’
Section 4.17.3: ‘Don't start a shell or command at all’
Section 4.17.4: ‘Enable compression’
Section 4.17.5: ‘Preferred SSH protocol version’
Section 4.17.6: Encryption algorithm selection

Section 4.17.1: Executing a specific command on the server
In SSH, you don't have to run a general shell session on the server. Instead, you can choose to
run a single specific command (such as a mail user agent, for example). If you want to do this,
enter the command in the ‘Remote command’ box.

Section 4.17.2: ‘Don't allocate a pseudo-terminal’
When connecting to a Unix system, most interactive shell sessions are run in a pseudo-terminal,
which allows the Unix system to pretend it's talking to a real physical terminal device but allows
the SSH server to catch all the data coming from that fake device and send it back to the client.
Occasionally you might find you have a need to run a session not in a pseudo-terminal. In
PuTTY, this is generally only useful for very specialist purposes; although in Plink (see chapter
7) it is the usual way of working.

Section 4.17.3: ‘Don't start a shell or command at all’
If you tick this box, PuTTY will not attempt to run a shell or command after connecting to the
remote server. You might want to use this option if you are only using the SSH connection for
port forwarding, and your user account on the server does not have the ability to run a shell.
This feature is only available in SSH protocol version 2 (since the version 1 protocol assumes
you will always want to run a shell).
This feature can also be enabled using the -N command-line option; see section 3.7.3.12.

If you use this feature in Plink, you will not be able to terminate the Plink process by any
graceful means; the only way to kill it will be by pressing Control-C or sending a kill signal from
another program.

Section 4.17.4: ‘Enable compression’
This enables data compression in the SSH connection: data sent by the server is compressed
before sending, and decompressed at the client end. Likewise, data sent by PuTTY to the server
is compressed first and the server decompresses it at the other end. This can help make the most
of a low-bandwidth connection.

Section 4.17.5: ‘Preferred SSH protocol version’
This allows you to select whether you would like to use SSH protocol version 1 or version 2.
PuTTY will attempt to use protocol 1 if the server you connect to does not offer protocol 2, and
vice versa.
If you select ‘1 only’ or ‘2 only’ here, PuTTY will only connect if the server you connect to
offers the SSH protocol version you have specified.

Section 4.17.6: Encryption algorithm selection
PuTTY supports a variety of different encryption algorithms, and allows you to choose which
one you prefer to use. You can do this by dragging the algorithms up and down in the list box (or
moving them using the Up and Down buttons) to specify a preference order. When you make an
SSH connection, PuTTY will search down the list from the top until it finds an algorithm
supported by the server, and then use that.
PuTTY currently supports the following algorithms:

• AES (Rijndael) - 256, 192, or 128-bit CBC (SSH-2 only)
• Blowfish - 128-bit CBC
• Triple-DES - 168-bit CBC
• Single-DES - 56-bit CBC (see below for SSH-2)

If the algorithm PuTTY finds is below the ‘warn below here’ line, you will see a warning box
when you make the connection:
The first cipher supported by the server
is single-DES, which is below the configured
warning threshold.
Do you want to continue with this connection?
This warns you that the first available encryption is not a very secure one. Typically you would
put the ‘warn below here’ line between the encryptions you consider secure and the ones you
consider substandard. By default, PuTTY supplies a preference order intended to reflect a
reasonable preference in terms of security and speed.
In SSH-2, the encryption algorithm is negotiated independently for each direction of the
connection, although PuTTY does not support separate configuration of the preference orders. As
a result you may get two warnings similar to the one above, possibly with different encryptions.
Single-DES is not recommended in the SSH 2 draft protocol standards, but one or two server
implementations do support it. PuTTY can use single-DES to interoperate with these servers if
you enable the ‘Enable legacy use of single-DES in SSH 2’ option; by default this is disabled and
PuTTY will stick to recommended ciphers.

Section 4.18: The Auth panel
The Auth panel allows you to configure authentication options for SSH sessions.
Section 4.18.1: ‘Attempt TIS or CryptoCard authentication’
Section 4.18.2: ‘Attempt keyboard-interactive authentication’
Section 4.18.3: ‘Allow agent forwarding’
Section 4.18.4: ‘Allow attempted changes of username in SSH2’
Section 4.18.5: ‘Private key file for authentication’

Section 4.18.1: ‘Attempt TIS or CryptoCard authentication’
TIS and CryptoCard authentication are simple challenge/response forms of authentication
available in SSH protocol version 1 only. You might use them if you were using S/Key one-time
passwords, for example, or if you had a physical security token that generated responses to
authentication challenges.
With this switch enabled, PuTTY will attempt these forms of authentication if the server is
willing to try them. You will be presented with a challenge string (which will be different every
time) and must supply the correct response in order to log in. If your server supports this, you
should talk to your system administrator about precisely what form these challenges and
responses take.

Section 4.18.2: ‘Attempt keyboard-interactive authentication’
The SSH 2 equivalent of TIS authentication is called ‘keyboard-interactive’. It is a flexible
authentication method using an arbitrary sequence of requests and responses; so it is not only
useful for challenge/response mechanisms such as S/Key, but it can also be used for (for
example) asking the user for a new password when the old one has expired.
PuTTY leaves this option enabled by default, but supplies a switch to turn it off in case you
should have trouble with it.

Section 4.18.3: ‘Allow agent forwarding’
This option allows the SSH server to open forwarded connections back to your local copy of
Pageant. If you are not running Pageant, this option will do nothing.
See chapter 9 for general information on Pageant, and section 9.4 for information on agent
forwarding. Note that there is a security risk involved with enabling this option; see section 9.5
for details.

Section 4.18.4: ‘Allow attempted changes of username in SSH2’
In the SSH 1 protocol, it is impossible to change username after failing to authenticate. So if you
mis-type your username at the PuTTY ‘login as:’ prompt, you will not be able to change it except
by restarting PuTTY.
The SSH 2 protocol does allow changes of username, in principle, but does not make it
mandatory for SSH 2 servers to accept them. In particular, OpenSSH does not accept a change of
username; once you have sent one username, it will reject attempts to try to authenticate as
another user. (Depending on the version of OpenSSH, it may quietly return failure for all login
attempts, or it may send an error message.)
For this reason, PuTTY will by default not prompt you for your username more than once, in
case the server complains. If you know your server can cope with it, you can enable the ‘Allow
attempted changes of username’ option to modify PuTTY's behaviour.

Section 4.18.5: ‘Private key file for authentication’
This box is where you enter the name of your private key file if you are using public key
authentication. See chapter 8 for information about public key authentication in SSH.
This key must be in PuTTY's native format (*.PPK).

Section 4.19: The Tunnels panel
The Tunnels panel allows you to configure tunnelling of other connection types through an SSH
connection.
Section 4.19.1: X11 forwarding
Section 4.19.2: Port forwarding
Section 4.19.3: Controlling the visibility of forwarded ports

Section 4.19.1: X11 forwarding
If your server lets you run X Window System applications, X11 forwarding allows you to
securely give those applications access to a local X display on your PC.
To enable X11 forwarding, check the ‘Enable X11 forwarding’ box. If your X display is
somewhere unusual, you will need to enter its location in the ‘X display location’ box; if this is
left blank, PuTTY try to find a sensible default in the environment, or use the primary local
display (:0) if that fails.

See section 3.4 for more information about X11 forwarding.
Section 4.19.1.1: Remote X11 authentication

Section 4.19.1.1: Remote X11 authentication
If you are using X11 forwarding, the virtual X server created on the SSH server machine will be
protected by authorisation data. This data is invented, and checked, by PuTTY.
The usual authorisation method used for this is called MIT-MAGIC-COOKIE-1. This is a
simple password-style protocol: the X client sends some cookie data to the server, and the server
checks that it matches the real cookie. The cookie data is sent over an unencrypted X11
connection; so if you allow a client on a third machine to access the virtual X server, then the
cookie will be sent in the clear.
PuTTY offers the alternative protocol XDM-AUTHORIZATION-1. This is a cryptographically
authenticated protocol: the data sent by the X client is different every time, and it depends on the
IP address and port of the client's end of the connection and is also stamped with the current
time. So an eavesdropper who captures an XDM-AUTHORIZATION-1 string cannot
immediately re-use it for their own X connection.
PuTTY's support for XDM-AUTHORIZATION-1 is a somewhat experimental feature, and may
encounter several problems:

• Some X clients probably do not even support XDM-AUTHORIZATION-1, so they will
not know what to do with the data PuTTY has provided.

• This authentication mechanism will only work in SSH v2. In SSH v1, the SSH server
does not tell the client the source address of a forwarded connection in a machine-
readable format, so it's impossible to verify the XDM-AUTHORIZATION-1 data.

• You may find this feature causes problems with some SSH servers, which will not clean
up XDM-AUTHORIZATION-1 data after a session, so that if you then connect to the
same server using a client which only does MIT-MAGIC-COOKIE-1 and are allocated
the same remote display number, you might find that out-of-date authentication data is
still present on your server and your X connections fail.

PuTTY's default is MIT-MAGIC-COOKIE-1. If you change it, you should be sure you know
what you're doing.

Section 4.19.2: Port forwarding
Port forwarding allows you to tunnel other types of network connection down an SSH session.
See section 3.5 for a general discussion of port forwarding and how it works.
The port forwarding section in the Tunnels panel shows a list of all the port forwardings that
PuTTY will try to set up when it connects to the server. By default no port forwardings are set
up, so this list is empty.
To add a port forwarding:

• Set one of the ‘Local’ or ‘Remote’ radio buttons, depending on whether you want to
forward a local port to a remote destination (‘Local’) or forward a remote port to a local
destination (‘Remote’). Alternatively, select ‘Dynamic’ if you want PuTTY to provide a
local SOCKS 4/4A/5 proxy on a local port.

• Enter a source port number into the ‘Source port’ box. For local forwardings, PuTTY will
listen on this port of your PC. For remote forwardings, your SSH server will listen on this
port of the remote machine. Note that most servers will not allow you to listen on port
numbers less than 1024.

• If you have selected ‘Local’ or ‘Remote’ (this step is not needed with ‘Dynamic’), enter a
hostname and port number separated by a colon, in the ‘Destination’ box. Connections
received on the source port will be directed to this destination. For example, to connect to
a POP-3 server, you might enter popserver.example.com:110.

• Click the ‘Add’ button. Your forwarding details should appear in the list box.
To remove a port forwarding, simply select its details in the list box, and click the ‘Remove’
button.
In the ‘Source port’ box, you can also optionally enter an IP address to listen on, by specifying
(for instance) 127.0.0.5:79. See section 3.5 for more information on how this works and its
restrictions.

Section 4.19.3: Controlling the visibility of forwarded ports
The source port for a forwarded connection usually does not accept connections from any
machine except the SSH client or server machine itself (for local and remote forwardings
respectively). There are controls in the Tunnels panel to change this:

• The ‘Local ports accept connections from other hosts’ option allows you to set up local-
to-remote port forwardings in such a way that machines other than your client PC can
connect to the forwarded port. (This also applies to dynamic SOCKS forwarding.)

• The ‘Remote ports do the same’ option does the same thing for remote-to-local port
forwardings (so that machines other than the SSH server machine can connect to the
forwarded port.) Note that this feature is only available in the SSH 2 protocol, and not all
SSH 2 servers support it (OpenSSH 3.0 does not, for example).

Section 4.20: The Bugs panel
Not all SSH servers work properly. Various existing servers have bugs in them, which can make
it impossible for a client to talk to them unless it knows about the bug and works around it.
Since most servers announce their software version number at the beginning of the SSH
connection, PuTTY will attempt to detect which bugs it can expect to see in the server and
automatically enable workarounds. However, sometimes it will make mistakes; if the server has
been deliberately configured to conceal its version number, or if the server is a version which
PuTTY's bug database does not know about, then PuTTY will not know what bugs to expect.
The Bugs panel allows you to manually configure the bugs PuTTY expects to see in the server.
Each bug can be configured in three states:

• ‘Off’: PuTTY will assume the server does not have the bug.
• ‘On’: PuTTY will assume the server does have the bug.
• ‘Auto’: PuTTY will use the server's version number announcement to try to guess

whether or not the server has the bug.
Section 4.20.1: ‘Chokes on SSH1 ignore messages’
Section 4.20.2: ‘Refuses all SSH1 password camouflage’
Section 4.20.3: ‘Chokes on SSH1 RSA authentication’
Section 4.20.4: ‘Miscomputes SSH2 HMAC keys’
Section 4.20.5: ‘Miscomputes SSH2 encryption keys’
Section 4.20.6: ‘Requires padding on SSH2 RSA signatures’
Section 4.20.7: ‘Chokes on Diffie-Hellman group exchange’
Section 4.20.8: ‘Misuses the session ID in PK auth’

Section 4.20.1: ‘Chokes on SSH1 ignore messages’
An ignore message (SSH_MSG_IGNORE) is a message in the SSH protocol which can be sent
from the client to the server, or from the server to the client, at any time. Either side is required to
ignore the message whenever it receives it. PuTTY uses ignore messages to hide the password
packet in SSH1, so that a listener cannot tell the length of the user's password; it also uses ignore
messages for connection keepalives (see section 4.13.5).
If this bug is detected, PuTTY will stop using ignore messages. This means that keepalives will
stop working, and PuTTY will have to fall back to a secondary defence against SSH1 password-
length eavesdropping. See section 4.20.2. If this bug is enabled when talking to a correct server,
the session will succeed, but keepalives will not work and the session might be more vulnerable
to eavesdroppers than it could be.
This is an SSH1-specific bug. No known SSH2 server fails to deal with SSH2 ignore messages.

Section 4.20.2: ‘Refuses all SSH1 password camouflage’
When talking to an SSH1 server which cannot deal with ignore messages (see section 4.20.1),
PuTTY will attempt to disguise the length of the user's password by sending additional padding
within the password packet. This is technically a violation of the SSH1 specification, and so
PuTTY will only do it when it cannot use standards-compliant ignore messages as camouflage.
In this sense, for a server to refuse to accept a padded password packet is not really a bug, but it
does make life inconvenient if the server can also not handle ignore messages.
If this ‘bug’ is detected, PuTTY will have no choice but to send the user's password with no form
of camouflage, so that an eavesdropping user will be easily able to find out the exact length of
the password. If this bug is enabled when talking to a correct server, the session will succeed, but
will be more vulnerable to eavesdroppers than it could be.
This is an SSH1-specific bug. SSH2 is secure against this type of attack.

Section 4.20.3: ‘Chokes on SSH1 RSA authentication’
Some SSH1 servers cannot deal with RSA authentication messages at all. If Pageant is running
and contains any SSH1 keys, PuTTY will normally automatically try RSA authentication before
falling back to passwords, so these servers will crash when they see the RSA attempt.
If this bug is detected, PuTTY will go straight to password authentication. If this bug is enabled
when talking to a correct server, the session will succeed, but of course RSA authentication will
be impossible.
This is an SSH1-specific bug.

Section 4.20.4: ‘Miscomputes SSH2 HMAC keys’
Versions 2.3.0 and below of the SSH server software from ssh.com compute the keys for their
HMAC message authentication codes incorrectly. A typical symptom of this problem is that
PuTTY dies unexpectedly at the beginning of the session, saying ‘Incorrect MAC received on
packet’.
If this bug is detected, PuTTY will compute its HMAC keys in the same way as the buggy
server, so that communication will still be possible. If this bug is enabled when talking to a
correct server, communication will fail.
This is an SSH2-specific bug.

Section 4.20.5: ‘Miscomputes SSH2 encryption keys’
Versions below 2.0.11 of the SSH server software from ssh.com compute the keys for the
session encryption incorrectly. This problem can cause various error messages, such as
‘Incoming packet was garbled on decryption’, or possibly even ‘Out of memory’.
If this bug is detected, PuTTY will compute its encryption keys in the same way as the buggy
server, so that communication will still be possible. If this bug is enabled when talking to a
correct server, communication will fail.
This is an SSH2-specific bug.

Section 4.20.6: ‘Requires padding on SSH2 RSA signatures’
Versions below 3.3 of OpenSSH require SSH2 RSA signatures to be padded with zero bytes to
the same length as the RSA key modulus. The SSH2 draft specification says that an unpadded
signature MUST be accepted, so this is a bug. A typical symptom of this problem is that PuTTY
mysteriously fails RSA authentication once in every few hundred attempts, and falls back to
passwords.
If this bug is detected, PuTTY will pad its signatures in the way OpenSSH expects. If this bug is
enabled when talking to a correct server, it is likely that no damage will be done, since correct
servers usually still accept padded signatures because they're used to talking to OpenSSH.
This is an SSH2-specific bug.

Section 4.20.7: ‘Chokes on Diffie-Hellman group exchange’
We have anecdotal evidence that some SSH servers claim to be able to perform Diffie-Hellman
group exchange, but fail to actually do so when PuTTY tries to. If your SSH2 sessions
spontaneously close immediately after opening the PuTTY window, it might be worth enabling
the workaround for this bug to see if it helps.
We have no hard evidence that any specific version of specific server software reliably
demonstrates this bug. Therefore, PuTTY will never assume a server has this bug; if you want
the workaround, you need to enable it manually.
This is an SSH2-specific bug.

Section 4.20.8: ‘Misuses the session ID in PK auth’
Versions below 2.3 of OpenSSH require SSH2 public-key authentication to be done slightly
differently: the data to be signed by the client contains the session ID formatted in a different
way. If public-key authentication mysteriously does not work but the Event Log (see section
3.1.3.1) thinks it has successfully sent a signature, it might be worth enabling the workaround for
this bug to see if it helps.
If this bug is detected, PuTTY will sign data in the way OpenSSH expects. If this bug is enabled
when talking to a correct server, SSH2 public-key authentication will fail.
This is an SSH2-specific bug.

Section 4.21: Storing configuration in a file
PuTTY does not currently support storing its configuration in a file instead of the Registry.
However, you can work around this with a couple of batch files.
You will need a file called (say) PUTTY.BAT which imports the contents of a file into the
Registry, then runs PuTTY, exports the contents of the Registry back into the file, and deletes the
Registry entries. This can all be done using the Regedit command line options, so it's all
automatic. Here is what you need in PUTTY.BAT:
@ECHO OFF
regedit /s putty.reg
regedit /s puttyrnd.reg
start /w putty.exe
regedit /ea new.reg HKEY_CURRENT_USER\Software\SimonTatham\PuTTY
copy new.reg putty.reg
del new.reg
regedit /s puttydel.reg
This batch file needs two auxiliary files: PUTTYRND.REG which sets up an initial safe location
for the PUTTY.RND random seed file, and PUTTYDEL.REG which destroys everything in the
Registry once it's been successfully saved back to the file.
Here is PUTTYDEL.REG:
REGEDIT4

[-HKEY_CURRENT_USER\Software\SimonTatham\PuTTY]
Here is an example PUTTYRND.REG file:
REGEDIT4

[HKEY_CURRENT_USER\Software\SimonTatham\PuTTY]
"RandSeedFile"="a:\\putty.rnd"
You should replace a:\putty.rnd with the location where you want to store your random
number data. If the aim is to carry around PuTTY and its settings on one floppy, you probably
want to store it on the floppy.

Chapter 5: Using PSCP to transfer files securely
PSCP, the PuTTY Secure Copy client, is a tool for transferring files securely between computers
using an SSH connection.
If you have an SSH 2 server, you might prefer PSFTP (see chapter 6) for interactive use. PSFTP
does not in general work with SSH 1 servers, however.
Section 5.1: Starting PSCP
Section 5.2: PSCP Usage

Section 5.1: Starting PSCP
PSCP is a command line application. This means that you cannot just double-click on its icon to
run it and instead you have to bring up a console window. With Windows 95, 98, and ME, this is
called an ‘MS-DOS Prompt’ and with Windows NT and 2000 it is called a ‘Command Prompt’.
It should be available from the Programs section of your Start Menu.
To start PSCP it will need either to be on your PATH or in your current directory. To add the
directory containing PSCP to your PATH environment variable, type into the console window:
set PATH=C:\path\to\putty\directory;%PATH%
This will only work for the lifetime of that particular console window. To set your PATH more
permanently on Windows NT, use the Environment tab of the System Control Panel. On
Windows 95, 98, and ME, you will need to edit your AUTOEXEC.BAT to include a set
command like the one above.

Section 5.2: PSCP Usage
Once you've got a console window to type into, you can just type pscp on its own to bring up a
usage message. This tells you the version of PSCP you're using, and gives you a brief summary
of how to use PSCP:
Z:\owendadmin>pscp
PuTTY Secure Copy client
Release 0.56
Usage: pscp [options] [user@]host:source target
 pscp [options] source [source...] [user@]host:target
 pscp [options] -ls [user@]host:filespec
Options:
 -p preserve file attributes
 -q quiet, don't show statistics
 -r copy directories recursively
 -v show verbose messages
 -load sessname Load settings from saved session
 -P port connect to specified port
 -l user connect with specified username
 -pw passw login with specified password
 -1 -2 force use of particular SSH protocol version
 -C enable compression
 -i key private key file for authentication
 -batch disable all interactive prompts
 -unsafe allow server-side wildcards (DANGEROUS)
 -V print version information
 -sftp force use of SFTP protocol
 -scp force use of SCP protocol
(PSCP's interface is much like the Unix scp command, if you're familiar with that.)

Section 5.2.1: The basics
Section 5.2.2: Options
Section 5.2.3: Return value
Section 5.2.4: Using public key authentication with PSCP

Section 5.2.1: The basics
To receive (a) file(s) from a remote server:
pscp [options] [user@]host:source target
So to copy the file /etc/hosts from the server example.com as user fred to the file c:\
temp\example-hosts.txt, you would type:
pscp fred@example.com:/etc/hosts c:\temp\example-hosts.txt
To send (a) file(s) to a remote server:
pscp [options] source [source...] [user@]host:target
So to copy the local file c:\documents\foo.txt to the server example.com as user
fred to the file /tmp/foo you would type:
pscp c:\documents\foo.txt fred@example.com:/tmp/foo
You can use wildcards to transfer multiple files in either direction, like this:
pscp c:\documents*.doc fred@example.com:docfiles
pscp fred@example.com:source/*.c c:\source
However, in the second case (using a wildcard for multiple remote files) you may see a warning
saying something like ‘warning: remote host tried to write to a file called 'terminal.c' when we
requested a file called '*.c'. If this is a wildcard, consider upgrading to SSH 2 or using the '-
unsafe' option. Renaming of this file has been disallowed’.
This is due to a fundamental insecurity in the old-style SCP protocol: the client sends the
wildcard string (*.c) to the server, and the server sends back a sequence of file names that
match the wildcard pattern. However, there is nothing to stop the server sending back a different
pattern and writing over one of your other files: if you request *.c, the server might send back
the file name AUTOEXEC.BAT and install a virus for you. Since the wildcard matching rules are
decided by the server, the client cannot reliably verify that the filenames sent back match the
pattern.
PSCP will attempt to use the newer SFTP protocol (part of SSH 2) where possible, which does
not suffer from this security flaw. If you are talking to an SSH 2 server which supports SFTP,
you will never see this warning. (You can force use of the SFTP protocol, if available, with -
sftp - see section 5.2.2.5.)

If you really need to use a server-side wildcard with an SSH 1 server, you can use the -unsafe
command line option with PSCP:
pscp -unsafe fred@example.com:source/*.c c:\source
This will suppress the warning message and the file transfer will happen. However, you should
be aware that by using this option you are giving the server the ability to write to any file in the
target directory, so you should only use this option if you trust the server administrator not to be
malicious (and not to let the server machine be cracked by malicious people).
Section 5.2.1.1: user
Section 5.2.1.2: host
Section 5.2.1.3: source

Section 5.2.1.4: target

Section 5.2.1.1: user
The login name on the remote server. If this is omitted, and host is a PuTTY saved session,
PSCP will use any username specified by that saved session. Otherwise, PSCP will attempt to
use the local Windows username.

Section 5.2.1.2: host
The name of the remote server, or the name of an existing PuTTY saved session. In the latter
case, the session's settings for hostname, port number, cipher type and username will be used.

Section 5.2.1.3: source
One or more source files. Wildcards are allowed. The syntax of wildcards depends on the system
to which they apply, so if you are copying from a Windows system to a UNIX system, you
should use Windows wildcard syntax (e.g. *.*), but if you are copying from a UNIX system to a
Windows system, you would use the wildcard syntax allowed by your UNIX shell (e.g. *).

If the source is a remote server and you do not specify a full pathname (in UNIX, a pathname
beginning with a / (slash) character), what you specify as a source will be interpreted relative to
your home directory on the remote server.

Section 5.2.1.4: target
The filename or directory to put the file(s). When copying from a remote server to a local host,
you may wish simply to place the file(s) in the current directory. To do this, you should specify a
target of .. For example:
pscp fred@example.com:/home/tom/.emacs .
...would copy /home/tom/.emacs on the remote server to the current directory.

As with the source parameter, if the target is on a remote server and is not a full path name, it
is interpreted relative to your home directory on the remote server.

Section 5.2.2: Options
PSCP accepts all the general command line options supported by the PuTTY tools, except the
ones which make no sense in a file transfer utility. See section 3.7.3 for a description of these
options. (The ones not supported by PSCP are clearly marked.)
PSCP also supports some of its own options. The following sections describe PSCP's specific
command-line options.
These are the command line options that PSCP accepts.
Section 5.2.2.1: -p preserve file attributes
Section 5.2.2.2: -q quiet, don't show statistics
Section 5.2.2.3: -r copies directories recursively
Section 5.2.2.4: -batch avoid interactive prompts
Section 5.2.2.5: -sftp , -scp force use of particular protocol

Section 5.2.2.1: -p preserve file attributes
By default, files copied with PSCP are timestamped with the date and time they were copied. The
-p option preserves the original timestamp on copied files.

Section 5.2.2.2: -q quiet, don't show statistics
By default, PSCP displays a meter displaying the progress of the current transfer:
mibs.tar | 168 kB | 84.0 kB/s | ETA: 00:00:13 | 13%
The fields in this display are (from left to right), filename, size (in kilobytes) of file transferred so
far, estimate of how fast the file is being transferred (in kilobytes per second), estimated time that
the transfer will be complete, and percentage of the file so far transferred. The -q option to
PSCP suppresses the printing of these statistics.

Section 5.2.2.3: -r copies directories recursively
By default, PSCP will only copy files. Any directories you specify to copy will be skipped, as
will their contents. The -r option tells PSCP to descend into any directories you specify, and to
copy them and their contents. This allows you to use PSCP to transfer whole directory structures
between machines.

Section 5.2.2.4: -batch avoid interactive prompts
If you use the -batch option, PSCP will never give an interactive prompt while establishing the
connection. If the server's host key is invalid, for example (see section 2.2), then the connection
will simply be abandoned instead of asking you what to do next.
This may help PSCP's behaviour when it is used in automated scripts: using -batch, if
something goes wrong at connection time, the batch job will fail rather than hang.

Section 5.2.2.5: -sftp, -scp force use of particular protocol
As mentioned in section 5.2.1, there are two different file transfer protocols in use with SSH.
Despite its name, PSCP (like many other ostensible scp clients) can use either of these
protocols.
The older SCP protocol does not have a written specification and leaves a lot of detail to the
server platform. Wildcards are expanded on the server. The simple design means that any
wildcard specification supported by the server platform (such as brace expansion) can be used,
but also leads to interoperability issues such as with filename quoting (for instance, where
filenames contain spaces), and also the security issue described in section 5.2.1.
The newer SFTP protocol, which is usually associated with SSH 2 servers, is specified in a more
platform independent way, and leaves issues such as wildcard syntax up to the client. This makes
it more consistent across platforms, more suitable for scripting and automation, and avoids
security issues with wilcard matching.
Normally PSCP will attempt to use the SFTP protocol, and only fall back to the SCP protocol if
SFTP is not available on the server.
The -scp option forces PSCP to use the SCP protocol or quit.

The -sftp option forces PSCP to use the SFTP protocol or quit. When this option is specified,
PSCP looks harder for an SFTP server, which may allow use of SFTP with SSH 1 depending on
server setup.

Section 5.2.3: Return value
PSCP returns an ERRORLEVEL of zero (success) only if the files were correctly transferred. You
can test for this in a batch file, using code such as this:
pscp file*.* user@hostname:
if errorlevel 1 echo There was an error

Section 5.2.4: Using public key authentication with PSCP
Like PuTTY, PSCP can authenticate using a public key instead of a password. There are three
ways you can do this.
Firstly, PSCP can use PuTTY saved sessions in place of hostnames (see section 5.2.1.2). So you
would do this:

• Run PuTTY, and create a PuTTY saved session (see section 4.1.2) which specifies your
private key file (see section 4.18.5). You will probably also want to specify a username to
log in as (see section 4.13.3).

• In PSCP, you can now use the name of the session instead of a hostname: type pscp
sessionname:file localfile, where sessionname is replaced by the name
of your saved session.

Secondly, you can supply the name of a private key file on the command line, with the -i
option. See section 3.7.3.15 for more information.
Thirdly, PSCP will attempt to authenticate using Pageant if Pageant is running (see chapter 9). So
you would do this:

• Ensure Pageant is running, and has your private key stored in it.
• Specify a user and host name to PSCP as normal. PSCP will automatically detect Pageant

and try to use the keys within it.
For more general information on public-key authentication, see chapter 8.

Chapter 6: Using PSFTP to transfer files securely
PSFTP, the PuTTY SFTP client, is a tool for transferring files securely between computers using
an SSH connection.
PSFTP differs from PSCP in the following ways:

• PSCP should work on virtually every SSH server. PSFTP uses the new SFTP protocol,
which is a feature of SSH 2 only. (PSCP will also use this protocol if it can, but there is
an SSH 1 equivalent it can fall back to if it cannot.)

• PSFTP allows you to run an interactive file transfer session, much like the Windows ftp
program. You can list the contents of directories, browse around the file system, issue
multiple get and put commands, and eventually log out. By contrast, PSCP is designed
to do a single file transfer operation and immediately terminate.

Section 6.1: Starting PSFTP
Section 6.2: Running PSFTP
Section 6.3: Using public key authentication with PSFTP

Section 6.1: Starting PSFTP
The usual way to start PSFTP is from a command prompt, much like PSCP. To do this, it will
need either to be on your PATH or in your current directory. To add the directory containing
PSFTP to your PATH environment variable, type into the console window:
set PATH=C:\path\to\putty\directory;%PATH%
Unlike PSCP, however, PSFTP has no complex command-line syntax; you just specify a host
name and perhaps a user name:
psftp server.example.com
or perhaps
psftp fred@server.example.com
Alternatively, if you just type psftp on its own (or double-click the PSFTP icon in the
Windows GUI), you will see the PSFTP prompt, and a message telling you PSFTP has not
connected to any server:
C:\>psftp
psftp: no hostname specified; use "open host.name" to connect
psftp>
At this point you can type open server.example.com or open
fred@server.example.com to start a session.

PSFTP accepts all the general command line options supported by the PuTTY tools, except the
ones which make no sense in a file transfer utility. See section 3.7.3 for a description of these
options. (The ones not supported by PSFTP are clearly marked.)
PSFTP also supports some of its own options. The following sections describe PSFTP's specific
command-line options.
Section 6.1.1: -b : specify a file containing batch commands
Section 6.1.2: -bc : display batch commands as they are run
Section 6.1.3: -be : continue batch processing on errors
Section 6.1.4: -batch : avoid interactive prompts

Section 6.1.1: -b: specify a file containing batch commands
In normal operation, PSFTP is an interactive program which displays a command line and
accepts commands from the keyboard.
If you need to do automated tasks with PSFTP, you would probably prefer to specify a set of
commands in advance and have them executed automatically. The -b option allows you to do
this. You use it with a file name containing batch commands. For example, you might create a
file called myscript.scr containing lines like this:
cd /home/ftp/users/jeff
del jam-old.tar.gz
ren jam.tar.gz jam-old.tar.gz
put jam.tar.gz
chmod a+r jam.tar.gz
quit
and then you could run the script by typing
psftp user@hostname -b myscript.scr
When you run a batch script in this way, PSFTP will abort the script if any command fails to
complete successfully. To change this behaviour, you can use the -be option (section 6.1.3).

Section 6.1.2: -bc: display batch commands as they are run
The -bc option alters what PSFTP displays while processing a batch script. With the -bc
option, PSFTP will display prompts and commands just as if the commands had been typed at
the keyboard. So instead of seeing this:
Sent username "fred"
Remote working directory is /home/fred
Listing directory /home/fred/lib
drwxrwsr-x 4 fred fred 1024 Sep 6 10:42 .
drwxr-sr-x 25 fred fred 2048 Dec 14 09:36 ..
drwxrwsr-x 3 fred fred 1024 Apr 17 2000 jed
lrwxrwxrwx 1 fred fred 24 Apr 17 2000 timber
drwxrwsr-x 2 fred fred 1024 Mar 13 2000 trn
you might see this:
Sent username "fred"
Remote working directory is /home/fred
psftp> dir lib
Listing directory /home/fred/lib
drwxrwsr-x 4 fred fred 1024 Sep 6 10:42 .
drwxr-sr-x 25 fred fred 2048 Dec 14 09:36 ..
drwxrwsr-x 3 fred fred 1024 Apr 17 2000 jed
lrwxrwxrwx 1 fred fred 24 Apr 17 2000 timber
drwxrwsr-x 2 fred fred 1024 Mar 13 2000 trn
psftp> quit

Section 6.1.3: -be: continue batch processing on errors
When running a batch file, this option causes PSFTP to continue processing even if a command
fails to complete successfully.
You might want this to happen if you wanted to delete a file and didn't care if it was already not
present, for example.

Section 6.1.4: -batch: avoid interactive prompts
If you use the -batch option, PSFTP will never give an interactive prompt while establishing
the connection. If the server's host key is invalid, for example (see section 2.2), then the
connection will simply be abandoned instead of asking you what to do next.
This may help PSFTP's behaviour when it is used in automated scripts: using -batch, if
something goes wrong at connection time, the batch job will fail rather than hang.

Section 6.2: Running PSFTP
Once you have started your PSFTP session, you will see a psftp> prompt. You can now type
commands to perform file-transfer functions. This section lists all the available commands.
Section 6.2.1: General quoting rules for PSFTP commands
Section 6.2.2: The open command: start a session
Section 6.2.3: The quit command: end your session
Section 6.2.4: The help command: get quick online help
Section 6.2.5: The cd and pwd commands: changing the remote working directory
Section 6.2.6: The lcd and lpwd commands: changing the local working directory
Section 6.2.7: The get command: fetch a file from the server
Section 6.2.8: The put command: send a file to the server
Section 6.2.9: The reget and reput commands: resuming file transfers
Section 6.2.10: The dir command: list remote files
Section 6.2.11: The chmod command: change permissions on remote files
Section 6.2.12: The del command: delete remote files
Section 6.2.13: The mkdir command: create remote directories
Section 6.2.14: The rmdir command: remove remote directories
Section 6.2.15: The ren command: rename remote files
Section 6.2.16: The ! command: run a local Windows command

Section 6.2.1: General quoting rules for PSFTP commands
Most PSFTP commands are considered by the PSFTP command interpreter as a sequence of
words, separated by spaces. For example, the command ren oldfilename newfilename
splits up into three words: ren (the command name), oldfilename (the name of the file to be
renamed), and newfilename (the new name to give the file).

Sometimes you will need to specify file names that contain spaces. In order to do this, you can
surround the file name with double quotes. This works equally well for local file names and
remote file names:
psftp> get "spacey file name.txt" "save it under this name.txt"
The double quotes themselves will not appear as part of the file names; they are removed by
PSFTP and their only effect is to stop the spaces inside them from acting as word separators.
If you need to use a double quote (on some types of remote system, such as Unix, you are
allowed to use double quotes in file names), you can do this by doubling it. This works both
inside and outside double quotes. For example, this command
psftp> ren ""this"" "a file with ""quotes"" in it"
will take a file whose current name is "this" (with a double quote character at the beginning
and the end) and rename it to a file whose name is a file with "quotes" in it.

(The one exception to the PSFTP quoting rules is the ! command, which passes its command
line straight to Windows without splitting it up into words at all. See section 6.2.16.)

Section 6.2.2: The open command: start a session
If you started PSFTP by double-clicking in the GUI, or just by typing psftp at the command
line, you will need to open a connection to an SFTP server before you can issue any other
commands (except help and quit).

To create a connection, type open host.name, or if you need to specify a user name as well
you can type open user@host.name.

Once you have issued this command, you will not be able to issue it again, even if the command
fails (for example, if you mistype the host name or the connection times out). So if the
connection is not opened successfully, PSFTP will terminate immediately.

Section 6.2.3: The quit command: end your session
When you have finished your session, type the command quit to terminate PSFTP and return to
the command line (or just close the PSFTP console window if you started it from the GUI).
You can also use the bye and exit commands, which have exactly the same effect.

Section 6.2.4: The help command: get quick online help
If you type help, PSFTP will give a short list of the available commands.

If you type help with a command name - for example, help get - then PSFTP will give a
short piece of help on that particular command.

Section 6.2.5: The cd and pwd commands: changing the remote
working directory
PSFTP maintains a notion of your ‘working directory’ on the server. This is the default directory
that other commands will operate on. For example, if you type get filename.dat then
PSFTP will look for filename.dat in your remote working directory on the server.

To change your remote working directory, use the cd command. If you don't provide an
argument, cd will return you to your home directory on the server (more precisely, the remote
directory you were in at the start of the connection).
To display your current remote working directory, type pwd.

Section 6.2.6: The lcd and lpwd commands: changing the local
working directory
As well as having a working directory on the remote server, PSFTP also has a working directory
on your local machine (just like any other Windows process). This is the default local directory
that other commands will operate on. For example, if you type get filename.dat then
PSFTP will save the resulting file as filename.dat in your local working directory.

To change your local working directory, use the lcd command. To display your current local
working directory, type lpwd.

Section 6.2.7: The get command: fetch a file from the server
To download a file from the server and store it on your local PC, you use the get command.

In its simplest form, you just use this with a file name:
get myfile.dat
If you want to store the file locally under a different name, specify the local file name after the
remote one:
get myfile.dat newname.dat
This will fetch the file on the server called myfile.dat, but will save it to your local machine
under the name newname.dat.

Section 6.2.8: The put command: send a file to the server
To upload a file to the server from your local PC, you use the put command.

In its simplest form, you just use this with a file name:
put myfile.dat
If you want to store the file remotely under a different name, specify the remote file name after
the local one:
put myfile.dat newname.dat
This will send the local file called myfile.dat, but will store it on the server under the name
newname.dat.

Section 6.2.9: The reget and reput commands: resuming file
transfers
If a file transfer fails half way through, and you end up with half the file stored on your disk, you
can resume the file transfer using the reget and reput commands. These work exactly like
the get and put commands, but they check for the presence of the half-written destination file
and start transferring from where the last attempt left off.
The syntax of reget and reput is exactly the same as the syntax of get and put:
reget myfile.dat
reget myfile.dat newname.dat

Section 6.2.10: The dir command: list remote files
To list the files in your remote working directory, just type dir.

You can also list the contents of a different directory by typing dir followed by the directory
name:
dir /home/fred
dir sources
The ls command works exactly the same way as dir.

Section 6.2.11: The chmod command: change permissions on
remote files
PSFTP allows you to modify the file permissions on files on the server. You do this using the
chmod command, which works very much like the Unix chmod command.

The basic syntax is chmod modes file, where modes represents a modification to the file
permissions, and file is the filename to modify. For example:
chmod go-rwx,u+w privatefile
chmod a+r publicfile
chmod 640 groupfile
The modes parameter can be a set of octal digits in the Unix style. (If you don't know what this
means, you probably don't want to be using it!) Alternatively, it can be a list of permission
modifications, separated by commas. Each modification consists of:

• The people affected by the modification. This can be u (the owning user), g (members of
the owning group), or o (everybody else - ‘others’), or some combination of those. It can
also be a (‘all’) to affect everybody at once.

• A + or - sign, indicating whether permissions are to be added or removed.

• The actual permissions being added or removed. These can be r (permission to read the
file), w (permission to write to the file), and x (permission to execute the file, or in the
case of a directory, permission to access files within the directory).

So the above examples would do:
• The first example: go-rwx removes read, write and execute permissions for members of

the owning group and everybody else (so the only permissions left are the ones for the
file owner). u+w adds write permission for the file owner.

• The second example: a+r adds read permission for everybody.

In addition to all this, there are a few extra special cases for Unix systems. On non-Unix systems
these are unlikely to be useful:

• You can specify u+s and u-s to add or remove the Unix set-user-ID bit. This is typically
only useful for special purposes; refer to your Unix documentation if you're not sure
about it.

• You can specify g+s and g-s to add or remove the Unix set-group-ID bit. On a file, this
works similarly to the set-user-ID bit (see your Unix documentation again); on a directory
it ensures that files created in the directory are accessible by members of the group that
owns the directory.

• You can specify +t and -t to add or remove the Unix ‘sticky bit’. When applied to a
directory, this means that the owner of a file in that directory can delete the file (whereas
normally only the owner of the directory would be allowed to).

Section 6.2.12: The del command: delete remote files
To delete a file on the server, type del and then the filename:
del oldfile.dat
The rm command works exactly the same way as del.

Section 6.2.13: The mkdir command: create remote directories
To create a directory on the server, type mkdir and then the directory name:
mkdir newstuff

Section 6.2.14: The rmdir command: remove remote directories
To remove a directory on the server, type rmdir and then the directory name:
rmdir oldstuff
Most SFTP servers will probably refuse to remove a directory if the directory has anything in it,
so you will need to delete the contents first.

Section 6.2.15: The ren command: rename remote files
To rename a file on the server, type ren, then the current file name, and then the new file name:
ren oldfile newname
The rename and mv commands work exactly the same way as ren.

Section 6.2.16: The ! command: run a local Windows command
You can run local Windows commands using the ! command. This is the only PSFTP command
that is not subject to the command quoting rules given in section 6.2.1. If any command line
begins with the ! character, then the rest of the line will be passed straight to Windows without
further translation.
For example, if you want to move an existing copy of a file out of the way before downloading
an updated version, you might type:
psftp> !ren myfile.dat myfile.bak
psftp> get myfile.dat
using the Windows ren command to rename files on your local PC.

Section 6.3: Using public key authentication with PSFTP
Like PuTTY, PSFTP can authenticate using a public key instead of a password. There are three
ways you can do this.
Firstly, PSFTP can use PuTTY saved sessions in place of hostnames. So you might do this:

• Run PuTTY, and create a PuTTY saved session (see section 4.1.2) which specifies your
private key file (see section 4.18.5). You will probably also want to specify a username to
log in as (see section 4.13.3).

• In PSFTP, you can now use the name of the session instead of a hostname: type psftp
sessionname, where sessionname is replaced by the name of your saved session.

Secondly, you can supply the name of a private key file on the command line, with the -i
option. See section 3.7.3.15 for more information.
Thirdly, PSFTP will attempt to authenticate using Pageant if Pageant is running (see chapter 9).
So you would do this:

• Ensure Pageant is running, and has your private key stored in it.
• Specify a user and host name to PSFTP as normal. PSFTP will automatically detect

Pageant and try to use the keys within it.
For more general information on public-key authentication, see chapter 8.

Chapter 7: Using the command-line connection tool Plink
Plink (PuTTY Link) is a command-line connection tool similar to UNIX ssh. It is mostly used
for automated operations, such as making CVS access a repository on a remote server.
Plink is probably not what you want if you want to run an interactive session in a console
window.
Section 7.1: Starting Plink
Section 7.2: Using Plink
Section 7.3: Using Plink in batch files and scripts
Section 7.4: Using Plink with CVS
Section 7.5: Using Plink with WinCVS

Section 7.1: Starting Plink
Plink is a command line application. This means that you cannot just double-click on its icon to
run it and instead you have to bring up a console window. In Windows 95, 98, and ME, this is
called an ‘MS-DOS Prompt’, and in Windows NT and 2000 it is called a ‘Command Prompt’. It
should be available from the Programs section of your Start Menu.
In order to use Plink, the file plink.exe will need either to be on your PATH or in your
current directory. To add the directory containing Plink to your PATH environment variable, type
into the console window:
set PATH=C:\path\to\putty\directory;%PATH%
This will only work for the lifetime of that particular console window. To set your PATH more
permanently on Windows NT, use the Environment tab of the System Control Panel. On
Windows 95, 98, and ME, you will need to edit your AUTOEXEC.BAT to include a set
command like the one above.

Section 7.2: Using Plink
This section describes the basics of how to use Plink for interactive logins and for automated
processes.
Once you've got a console window to type into, you can just type plink on its own to bring up
a usage message. This tells you the version of Plink you're using, and gives you a brief summary
of how to use Plink:
Z:\sysosd>plink
PuTTY Link: command-line connection utility
Release 0.56
Usage: plink [options] [user@]host [command]
 ("host" can also be a PuTTY saved session name)
Options:
 -V print version information
 -v show verbose messages
 -load sessname Load settings from saved session
 -ssh -telnet -rlogin -raw
 force use of a particular protocol
 -P port connect to specified port
 -l user connect with specified username
 -m file read remote command(s) from file
 -batch disable all interactive prompts
The following options only apply to SSH connections:
 -pw passw login with specified password
 -D [listen-IP:]listen-port
 Dynamic SOCKS-based port forwarding
 -L [listen-IP:]listen-port:host:port
 Forward local port to remote address
 -R [listen-IP:]listen-port:host:port
 Forward remote port to local address
 -X -x enable / disable X11 forwarding
 -A -a enable / disable agent forwarding
 -t -T enable / disable pty allocation
 -1 -2 force use of particular protocol version
 -C enable compression
 -i key private key file for authentication
 -s remote command is an SSH subsystem (SSH-2 only)
 -N don't start a shell/command (SSH-2 only)
Once this works, you are ready to use Plink.
Section 7.2.1: Using Plink for interactive logins
Section 7.2.2: Using Plink for automated connections
Section 7.2.3: Plink command line options

Section 7.2.1: Using Plink for interactive logins
To make a simple interactive connection to a remote server, just type plink and then the host
name:
Z:\sysosd>plink login.example.com

Debian GNU/Linux 2.2 flunky.example.com
flunky login:
You should then be able to log in as normal and run a session. The output sent by the server will
be written straight to your command prompt window, which will most likely not interpret
terminal control codes in the way the server expects it to. So if you run any full-screen
applications, for example, you can expect to see strange characters appearing in your window.
Interactive connections like this are not the main point of Plink.
In order to connect with a different protocol, you can give the command line options -ssh, -
telnet, -rlogin or -raw. To make an SSH connection, for example:
Z:\sysosd>plink -ssh login.example.com
login as:
If you have already set up a PuTTY saved session, then instead of supplying a host name, you
can give the saved session name. This allows you to use public-key authentication, specify a user
name, and use most of the other features of PuTTY:
Z:\sysosd>plink my-ssh-session
Sent username "fred"
Authenticating with public key "fred@winbox"
Last login: Thu Dec 6 19:25:33 2001 from :0.0
fred@flunky:~$

Section 7.2.2: Using Plink for automated connections
More typically Plink is used with the SSH protocol, to enable you to talk directly to a program
running on the server. To do this you have to ensure Plink is using the SSH protocol. You can do
this in several ways:

• Use the -ssh option as described in section 7.2.1.

• Set up a PuTTY saved session that describes the server you are connecting to, and that
also specifies the protocol as SSH.

• Set the Windows environment variable PLINK_PROTOCOL to the word ssh.

Usually Plink is not invoked directly by a user, but run automatically by another process.
Therefore you typically do not want Plink to prompt you for a user name or a password.
Next, you are likely to need to avoid the various interactive prompts Plink can produce. You
might be prompted to verify the host key of the server you're connecting to, to enter a user name,
or to enter a password.
To avoid being prompted for the server host key when using Plink for an automated connection,
you should first make a manual connection (using either of PuTTY or Plink) to the same server,
verify the host key (see section 2.2 for more information), and select Yes to add the host key to
the Registry. After that, Plink commands connecting to that server should not give a host key
prompt unless the host key changes.
To avoid being prompted for a user name, you can:

• Use the -l option to specify a user name on the command line. For example, plink
login.example.com -l fred.

• Set up a PuTTY saved session that describes the server you are connecting to, and that
also specifies the username to log in as (see section 4.13.3).

To avoid being prompted for a password, you should almost certainly set up public-key
authentication. (See chapter 8 for a general introduction to public-key authentication.) Again, you
can do this in two ways:

• Set up a PuTTY saved session that describes the server you are connecting to, and that
also specifies a private key file (see section 4.18.5). For this to work without prompting,
your private key will need to have no passphrase.

• Store the private key in Pageant. See chapter 9 for further information.
Once you have done all this, you should be able to run a remote command on the SSH server
machine and have it execute automatically with no prompting:
Z:\sysosd>plink login.example.com -l fred echo hello, world
hello, world

Z:\sysosd>
Or, if you have set up a saved session with all the connection details:
Z:\sysosd>plink mysession echo hello, world
hello, world

Z:\sysosd>
Then you can set up other programs to run this Plink command and talk to it as if it were a
process on the server machine.

Section 7.2.3: Plink command line options
Plink accepts all the general command line options supported by the PuTTY tools. See section
3.7.3 for a description of these options.
Plink also supports some of its own options. The following sections describe Plink's specific
command-line options.
Section 7.2.3.1: -batch : disable all interactive prompts
Section 7.2.3.2: -s : remote command is SSH subsystem

Section 7.2.3.1: -batch: disable all interactive prompts
If you use the -batch option, Plink will never give an interactive prompt while establishing the
connection. If the server's host key is invalid, for example (see section 2.2), then the connection
will simply be abandoned instead of asking you what to do next.
This may help Plink's behaviour when it is used in automated scripts: using -batch, if
something goes wrong at connection time, the batch job will fail rather than hang.

Section 7.2.3.2: -s: remote command is SSH subsystem
If you specify the -s option, Plink passes the specified command as the name of an SSH
‘subsystem’ rather than an ordinary command line.
(This option is only meaningful with the SSH-2 protocol.)

Section 7.3: Using Plink in batch files and scripts
Once you have set up Plink to be able to log in to a remote server without any interactive
prompting (see section 7.2.2), you can use it for lots of scripting and batch purposes. For
example, to start a backup on a remote machine, you might use a command like:
plink root@myserver /etc/backups/do-backup.sh
Or perhaps you want to fetch all system log lines relating to a particular web area:
plink mysession grep /~fred/ /var/log/httpd/access.log > fredlog
Any non-interactive command you could usefully run on the server command line, you can run
in a batch file using Plink in this way.

Section 7.4: Using Plink with CVS
To use Plink with CVS, you need to set the environment variable CVS_RSH to point to Plink:
set CVS_RSH=\path\to\plink.exe
You also need to arrange to be able to connect to a remote host without any interactive prompts,
as described in section 7.2.2.
You should then be able to run CVS as follows:
cvs -d :ext:user@sessionname:/path/to/repository co module
If you specified a username in your saved session, you don't even need to specify the ‘user’ part
of this, and you can just say:
cvs -d :ext:sessionname:/path/to/repository co module

Section 7.5: Using Plink with WinCVS
Plink can also be used with WinCVS. Firstly, arrange for Plink to be able to connect to a remote
host non-interactively, as described in section 7.2.2.
Then, in WinCVS, bring up the ‘Preferences’ dialogue box from the Admin menu, and switch to
the ‘Ports’ tab. Tick the box there labelled ‘Check for an alternate rsh name’ and in the text
entry field to the right enter the full path to plink.exe. Select ‘OK’ on the ‘Preferences’
dialogue box.
Next, select ‘Command Line’ from the WinCVS ‘Admin’ menu, and type a CVS command as in
section 7.4, for example:
cvs -d :ext:user@hostname:/path/to/repository co module
or (if you're using a saved session):
cvs -d :ext:user@sessionname:/path/to/repository co module
Select the folder you want to check out to with the ‘Change Folder’ button, and click ‘OK’ to
check out your module. Once you've got modules checked out, WinCVS will happily invoke
plink from the GUI for CVS operations.

Chapter 8: Using public keys for SSH authentication
Section 8.1: Public key authentication - an introduction
Section 8.2: Using PuTTYgen, the PuTTY key generator
Section 8.3: Getting ready for public key authentication

Section 8.1: Public key authentication - an introduction
Public key authentication is an alternative means of identifying yourself to a login server, instead
of typing a password. It is more secure and more flexible, but more difficult to set up.
In conventional password authentication, you prove you are who you claim to be by proving that
you know the correct password. The only way to prove you know the password is to tell the
server what you think the password is. This means that if the server has been hacked, or spoofed
(see section 2.2), an attacker can learn your password.
Public key authentication solves this problem. You generate a key pair, consisting of a public key
(which everybody is allowed to know) and a private key (which you keep secret and do not give
to anybody). The private key is able to generate signatures. A signature created using your
private key cannot be forged by anybody who does not have that key; but anybody who has your
public key can verify that a particular signature is genuine.
So you generate a key pair on your own computer, and you copy the public key to the server.
Then, when the server asks you to prove who you are, PuTTY can generate a signature using
your private key. The server can verify that signature (since it has your public key) and allow you
to log in. Now if the server is hacked or spoofed, the attacker does not gain your private key or
password; they only gain one signature. And signatures cannot be re-used, so they have gained
nothing.
There is a problem with this: if your private key is stored unprotected on your own computer,
then anybody who gains access to that will be able to generate signatures as if they were you. So
they will be able to log in to your server under your account. For this reason, your private key is
usually encrypted when it is stored on your local machine, using a passphrase of your choice. In
order to generate a signature, PuTTY must decrypt the key, so you have to type your passphrase.
This can make public-key authentication less convenient than password authentication: every
time you log in to the server, instead of typing a short password, you have to type a longer
passphrase. One solution to this is to use an authentication agent, a separate program which
holds decrypted private keys and generates signatures on request. PuTTY's authentication agent
is called Pageant. When you begin a Windows session, you start Pageant and load your private
key into it (typing your passphrase once). For the rest of your session, you can start PuTTY any
number of times and Pageant will automatically generate signatures without you having to do
anything. When you close your Windows session, Pageant shuts down, without ever having
stored your decrypted private key on disk. Many people feel this is a good compromise between
security and convenience. See chapter 9 for further details.
There is more than one public-key algorithm available. The most common is RSA, but others
exist, notably DSA (otherwise known as DSS), the USA's federal Digital Signature Standard.
The key types supported by PuTTY are described in section 8.2.2.

Section 8.2: Using PuTTYgen, the PuTTY key generator
PuTTYgen is a key generator. It generates pairs of public and private keys to be used with
PuTTY, PSCP, and Plink, as well as the PuTTY authentication agent, Pageant (see chapter 9).
PuTTYgen generates RSA and DSA keys.
When you run PuTTYgen you will see a window where you have two choices: ‘Generate’, to
generate a new public/private key pair, or ‘Load’ to load in an existing private key.
Section 8.2.1: Generating a new key
Section 8.2.2: Selecting the type of key
Section 8.2.3: Selecting the size (strength) of the key
Section 8.2.4: The ‘Generate’ button
Section 8.2.5: The ‘Key fingerprint’ box
Section 8.2.6: Setting a comment for your key
Section 8.2.7: Setting a passphrase for your key
Section 8.2.8: Saving your private key to a disk file
Section 8.2.9: Saving your public key to a disk file
Section 8.2.10: ‘Public key for pasting into authorized_keys file’
Section 8.2.11: Reloading a private key
Section 8.2.12: Dealing with private keys in other formats

Section 8.2.1: Generating a new key
This is a general outline of the procedure for generating a new key pair. The following sections
describe the process in more detail.

• First, you need to select which type of key you want to generate, and also select the
strength of the key. This is described in more detail in section 8.2.2 and section 8.2.3.

• Then press the ‘Generate’ button, to actually generate the key. Section 8.2.4 describes this
step.

• Once you have generated the key, select a comment field (section 8.2.6) and a passphrase
(section 8.2.7).

• Now you're ready to save the private key to disk; press the ‘Save private key’ button. (See
section 8.2.8).

Your key pair is now ready for use. You may also want to copy the public key to your server,
either by copying it out of the ‘Public key for pasting into authorized_keys file’ box (see section
8.2.10), or by using the ‘Save public key’ button (section 8.2.9). However, you don't need to do
this immediately; if you want, you can load the private key back into PuTTYgen later (see
section 8.2.11) and the public key will be available for copying and pasting again.
section 8.3 describes the typical process of configuring PuTTY to attempt public-key
authentication, and configuring your SSH server to accept it.

Section 8.2.2: Selecting the type of key
Before generating a key pair using PuTTYgen, you need to select which type of key you need.
PuTTYgen currently supports three types of key:

• An RSA key for use with the SSH 1 protocol.
• An RSA key for use with the SSH 2 protocol.
• A DSA key for use with the SSH 2 protocol.

The SSH 1 protocol only supports RSA keys; if you will be connecting using the SSH 1 protocol,
you must select the first key type or your key will be completely useless.
The SSH 2 protocol supports more than one key type. The two types supported by PuTTY are
RSA and DSA.
The PuTTY developers strongly recommend you use RSA. DSA has an intrinsic weakness which
makes it very easy to create a signature which contains enough information to give away the
private key! This would allow an attacker to pretend to be you for any number of future sessions.
PuTTY's implementation has taken very careful precautions to avoid this weakness, but we
cannot be 100% certain we have managed it, and if you have the choice we strongly recommend
using RSA keys instead.
If you really need to connect to an SSH server which only supports DSA, then you probably have
no choice but to use DSA. If you do use DSA, we recommend you do not use the same key to
authenticate with more than one server.

Section 8.2.3: Selecting the size (strength) of the key
The ‘Number of bits’ input box allows you to choose the strength of the key PuTTYgen will
generate.
Currently 1024 bits should be sufficient for most purposes.
Note that an RSA key is generated by finding two primes of half the length requested, and then
multiplying them together. For example, if you ask PuTTYgen for a 1024-bit RSA key, it will
create two 512-bit primes and multiply them. The result of this multiplication might be 1024 bits
long, or it might be only 1023; so you may not get the exact length of key you asked for. This is
perfectly normal, and you do not need to worry. The lengths should only ever differ by one, and
there is no perceptible drop in security as a result.
DSA keys are not created by multiplying primes together, so they should always be exactly the
length you asked for.

Section 8.2.4: The ‘Generate’ button
Once you have chosen the type of key you want, and the strength of the key, press the ‘Generate’
button and PuTTYgen will begin the process of actually generating the key.
First, a progress bar will appear and PuTTYgen will ask you to move the mouse around to
generate randomness. Wave the mouse in circles over the blank area in the PuTTYgen window,
and the progress bar will gradually fill up as PuTTYgen collects enough randomness. You don't
need to wave the mouse in particularly imaginative patterns (although it can't hurt); PuTTYgen
will collect enough randomness just from the fine detail of exactly how far the mouse has moved
each time Windows samples its position.
When the progress bar reaches the end, PuTTYgen will begin creating the key. The progress bar
will reset to the start, and gradually move up again to track the progress of the key generation. It
will not move evenly, and may occasionally slow down to a stop; this is unfortunately
unavoidable, because key generation is a random process and it is impossible to reliably predict
how long it will take.
When the key generation is complete, a new set of controls will appear in the window to indicate
this.

Section 8.2.5: The ‘Key fingerprint’ box
The ‘Key fingerprint’ box shows you a fingerprint value for the generated key. This is derived
cryptographically from the public key value, so it doesn't need to be kept secret.
The fingerprint value is intended to be cryptographically secure, in the sense that it is
computationally infeasible for someone to invent a second key with the same fingerprint, or to
find a key with a particular fingerprint. So some utilities, such as the Pageant key list box (see
section 9.2.1) and the Unix ssh-add utility, will list key fingerprints rather than the whole
public key.

Section 8.2.6: Setting a comment for your key
If you have more than one key and use them for different purposes, you don't need to memorise
the key fingerprints in order to tell them apart. PuTTY allows you to enter a comment for your
key, which will be displayed whenever PuTTY or Pageant asks you for the passphrase.
The default comment format, if you don't specify one, contains the key type and the date of
generation, such as rsa-key-20011212. Another commonly used approach is to use your
name and the name of the computer the key will be used on, such as simon@simons-pc.

To alter the key comment, just type your comment text into the ‘Key comment’ box before
saving the private key. If you want to change the comment later, you can load the private key
back into PuTTYgen, change the comment, and save it again.

Section 8.2.7: Setting a passphrase for your key
The ‘Key passphrase’ and ‘Confirm passphrase’ boxes allow you to choose a passphrase for your
key. The passphrase will be used to encrypt the key on disk, so you will not be able to use the
key without first entering the passphrase.
When you save the key, PuTTY will check that the ‘Key passphrase’ and ‘Confirm passphrase’
boxes both contain exactly the same passphrase, and will refuse to save the key otherwise.
If you leave the passphrase fields blank, the key will be saved unencrypted. You should not do
this without good reason; if you do, your private key file on disk will be all an attacker needs to
gain access to any machine configured to accept that key. If you want to be able to log in without
having to type a passphrase every time, you should consider using Pageant (chapter 9) so that
your decrypted key is only held in memory rather than on disk.
Under special circumstances you may genuinely need to use a key with no passphrase; for
example, if you need to run an automated batch script that needs to make an SSH connection,
you can't be there to type the passphrase. In this case we recommend you generate a special key
for each specific batch script (or whatever) that needs one, and on the server side you should
arrange that each key is restricted so that it can only be used for that specific purpose. The
documentation for your SSH server should explain how to do this (it will probably vary between
servers).
Choosing a good passphrase is difficult. Just as you shouldn't use a dictionary word as a
password because it's easy for an attacker to run through a whole dictionary, you should not use a
song lyric, quotation or other well-known sentence as a passphrase. DiceWare
(www.diceware.com) recommends using at least five words each generated randomly by
rolling five dice, which gives over 2^64 possible passphrases and is probably not a bad scheme.
If you want your passphrase to make grammatical sense, this cuts down the possibilities a lot and
you should use a longer one as a result.
Do not forget your passphrase. There is no way to recover it.

Section 8.2.8: Saving your private key to a disk file
Once you have generated a key, set a comment field and set a passphrase, you are ready to save
your private key to disk.
Press the ‘Save private key’ button. PuTTYgen will put up a dialog box asking you where to save
the file. Select a directory, type in a file name, and press ‘Save’.
This file is in PuTTY's native format (*.PPK); it is the one you will need to tell PuTTY to use
for authentication (see section 4.18.5) or tell Pageant to load (see section 9.2.2).

Section 8.2.9: Saving your public key to a disk file
The SSH 2 protocol drafts specify a standard format for storing public keys on disk. Some SSH
servers (such as ssh.com's) require a public key in this format in order to accept authentication
with the corresponding private key. (Others, such as OpenSSH, use a different format; see
section 8.2.10.)
To save your public key in the SSH 2 standard format, press the ‘Save public key’ button in
PuTTYgen. PuTTYgen will put up a dialog box asking you where to save the file. Select a
directory, type in a file name, and press ‘Save’.
You will then probably want to copy the public key file to your SSH server machine. See section
8.3 for general instructions on configuring public-key authentication once you have generated a
key.
If you use this option with an SSH 1 key, the file PuTTYgen saves will contain exactly the same
text that appears in the ‘Public key for pasting’ box. This is the only existing standard for SSH 1
public keys.

Section 8.2.10: ‘Public key for pasting into authorized_keys file’
All SSH 1 servers require your public key to be given to it in a one-line format before it will
accept authentication with your private key. The OpenSSH server also requires this for SSH 2.
The ‘Public key for pasting into authorized_keys file’ gives the public-key data in the correct
one-line format. Typically you will want to select the entire contents of the box using the mouse,
press Ctrl+C to copy it to the clipboard, and then paste the data into a PuTTY session which is
already connected to the server.
See section 8.3 for general instructions on configuring public-key authentication once you have
generated a key.

Section 8.2.11: Reloading a private key
PuTTYgen allows you to load an existing private key file into memory. If you do this, you can
then change the passphrase and comment before saving it again; you can also make extra copies
of the public key.
To load an existing key, press the ‘Load’ button. PuTTYgen will put up a dialog box where you
can browse around the file system and find your key file. Once you select the file, PuTTYgen
will ask you for a passphrase (if necessary) and will then display the key details in the same way
as if it had just generated the key.
If you use the Load command to load a foreign key format, it will work, but you will see a
message box warning you that the key you have loaded is not a PuTTY native key. See section
8.2.12 for information about importing foreign key formats.

Section 8.2.12: Dealing with private keys in other formats
Most SSH1 clients use a standard format for storing private keys on disk. PuTTY uses this
format as well; so if you have generated an SSH1 private key using OpenSSH or ssh.com's
client, you can use it with PuTTY, and vice versa.
However, SSH2 private keys have no standard format. OpenSSH and ssh.com have different
formats, and PuTTY's is different again. So a key generated with one client cannot immediately
be used with another.
Using the ‘Import’ command from the ‘Conversions’ menu, PuTTYgen can load SSH2 private
keys in OpenSSH's format and ssh.com's format. Once you have loaded one of these key
types, you can then save it back out as a PuTTY-format key (*.PPK) so that you can use it with
the PuTTY suite. The passphrase will be unchanged by this process (unless you deliberately
change it). You may want to change the key comment before you save the key, since OpenSSH's
SSH2 key format contains no space for a comment and ssh.com's default comment format is
long and verbose.
PuTTYgen can also export private keys in OpenSSH format and in ssh.com format. To do so,
select one of the ‘Export’ options from the ‘Conversions’ menu. Exporting a key works exactly
like saving it (see section 8.2.8) - you need to have typed your passphrase in beforehand, and you
will be warned if you are about to save a key without a passphrase.
Note that since only SSH2 keys come in different formats, the export options are not available if
you have generated an SSH1 key.

Section 8.3: Getting ready for public key authentication
Connect to your SSH server using PuTTY with the SSH protocol. When the connection succeeds
you will be prompted for your user name and password to login. Once logged in, you must
configure the server to accept your public key for authentication:

• If your server is using the SSH 1 protocol, you should change into the .ssh directory
and open the file authorized_keys with your favourite editor. (You may have to
create this file if this is the first key you have put in it). Then switch to the PuTTYgen
window, select all of the text in the ‘Public key for pasting into authorized_keys file’ box
(see section 8.2.10), and copy it to the clipboard (Ctrl+C). Then, switch back to the
PuTTY window and insert the data into the open file, making sure it ends up all on one
line. Save the file.

• If your server is OpenSSH and is using the SSH 2 protocol, you should follow the same
instructions, except that in earlier versions of OpenSSH 2 the file might be called
authorized_keys2. (In modern versions the same authorized_keys file is used
for both SSH 1 and SSH 2 keys.)

• If your server is ssh.com's SSH 2 product, you need to save a public key file from
PuTTYgen (see section 8.2.9), and copy that into the .ssh2 directory on the server.
Then you should go into that .ssh2 directory, and edit (or create) a file called
authorization. In this file you should put a line like Key mykey.pub, with
mykey.pub replaced by the name of your key file.

• For other SSH server software, you should refer to the manual for that server.
You may also need to ensure that your home directory, your .ssh directory, and any other files
involved (such as authorized_keys, authorized_keys2 or authorization) are not
group-writable or world-writable. You can typically do this by using a command such as
chmod go-w $HOME $HOME/.ssh $HOME/.ssh/authorized_keys
Your server should now be configured to accept authentication using your private key. Now you
need to configure PuTTY to attempt authentication using your private key. You can do this in any
of three ways:

• Select the private key in PuTTY's configuration. See section 4.18.5 for details.
• Specify the key file on the command line with the -i option. See section 3.7.3.15 for

details.
• Load the private key into Pageant (see chapter 9). In this case PuTTY will automatically

try to use it for authentication if it can.

Chapter 9: Using Pageant for authentication
Pageant is an SSH authentication agent. It holds your private keys in memory, already decoded,
so that you can use them often without needing to type a passphrase.
Section 9.1: Getting started with Pageant
Section 9.2: The Pageant main window
Section 9.3: The Pageant command line
Section 9.4: Using agent forwarding
Section 9.5: Security considerations

Section 9.1: Getting started with Pageant
Before you run Pageant, you need to have a private key in *.PPK format. See chapter 8 to find
out how to generate and use one.
When you run Pageant, it will put an icon of a computer wearing a hat into the System tray. It
will then sit and do nothing, until you load a private key into it.
If you click the Pageant icon with the right mouse button, you will see a menu. Select ‘View
Keys’ from this menu. The Pageant main window will appear. (You can also bring this window
up by double-clicking on the Pageant icon.)
The Pageant window contains a list box. This shows the private keys Pageant is holding. When
you start Pageant, it has no keys, so the list box will be empty. After you add one or more keys,
they will show up in the list box.
To add a key to Pageant, press the ‘Add Key’ button. Pageant will bring up a file dialog, labelled
‘Select Private Key File’. Find your private key file in this dialog, and press ‘Open’.
Pageant will now load the private key. If the key is protected by a passphrase, Pageant will ask
you to type the passphrase. When the key has been loaded, it will appear in the list in the Pageant
window.
Now start PuTTY and open an SSH session to a site that accepts your key. PuTTY will notice
that Pageant is running, retrieve the key automatically from Pageant, and use it to authenticate.
You can now open as many PuTTY sessions as you like without having to type your passphrase
again.
When you want to shut down Pageant, click the right button on the Pageant icon in the System
tray, and select ‘Exit’ from the menu. Closing the Pageant main window does not shut down
Pageant.

Section 9.2: The Pageant main window
The Pageant main window appears when you left-click on the Pageant system tray icon, or
alternatively right-click and select ‘View Keys’ from the menu. You can use it to keep track of
what keys are currently loaded into Pageant, and to add new ones or remove the existing keys.
Section 9.2.1: The key list box
Section 9.2.2: The ‘Add Key’ button
Section 9.2.3: The ‘Remove Key’ button

Section 9.2.1: The key list box
The large list box in the Pageant main window lists the private keys that are currently loaded into
Pageant. The list might look something like this:
ssh1 1024 22:c3:68:3b:09:41:36:c3:39:83:91:ae:71:b2:0f:04 k1
ssh-rsa 1023 74:63:08:82:95:75:e1:7c:33:31:bb:cb:00:c0:89:8b k2
For each key, the list box will tell you:

• The type of the key. Currently, this can be ssh1 (an RSA key for use with the SSH v1
protocol), ssh-rsa (an RSA key for use with the SSH v2 protocol), or ssh-dss (a
DSA key for use with the SSH v2 protocol).

• The size (in bits) of the key.
• The fingerprint for the public key. This should be the same fingerprint given by

PuTTYgen, and (hopefully) also the same fingerprint shown by remote utilities such as
ssh-keygen when applied to your authorized_keys file.

• The comment attached to the key.

Section 9.2.2: The ‘Add Key’ button
To add a key to Pageant by reading it out of a local disk file, press the ‘Add Key’ button in the
Pageant main window, or alternatively right-click on the Pageant icon in the system tray and
select ‘Add Key’ from there.
Pageant will bring up a file dialog, labelled ‘Select Private Key File’. Find your private key file
in this dialog, and press ‘Open’. If you want to add more than one key at once, you can select
multiple files using Shift-click (to select several adjacent files) or Ctrl-click (to select non-
adjacent files).
Pageant will now load the private key(s). If a key is protected by a passphrase, Pageant will ask
you to type the passphrase.
(This is not the only way to add a private key to Pageant. You can also add one from a remote
system by using agent forwarding; see section 9.4 for details.)

Section 9.2.3: The ‘Remove Key’ button
If you need to remove a key from Pageant, select that key in the list box, and press the ‘Remove
Key’ button. Pageant will remove the key from its memory.
You can apply this to keys you added using the ‘Add Key’ button, or to keys you added remotely
using agent forwarding (see section 9.4); it makes no difference.

Section 9.3: The Pageant command line
Pageant can be made to do things automatically when it starts up, by specifying instructions on
its command line. If you're starting Pageant from the Windows GUI, you can arrange this by
editing the properties of the Windows shortcut that it was started from.
Section 9.3.1: Making Pageant automatically load keys on startup
Section 9.3.2: Making Pageant run another program

Section 9.3.1: Making Pageant automatically load keys on startup
Pageant can automatically load one or more private keys when it starts up, if you provide them
on the Pageant command line. Your command line might then look like:
C:\PuTTY\pageant.exe d:\main.ppk d:\secondary.ppk
If the keys are stored encrypted, Pageant will request the passphrases on startup.

Section 9.3.2: Making Pageant run another program
You can arrange for Pageant to start another program once it has initialised itself and loaded any
keys specified on its command line. This program (perhaps a PuTTY, or a WinCVS making use
of Plink, or whatever) will then be able to use the keys Pageant has loaded.
You do this by specifying the -c option followed by the command, like this:
C:\PuTTY\pageant.exe d:\main.ppk -c C:\PuTTY\putty.exe

Section 9.4: Using agent forwarding
Agent forwarding is a mechanism that allows applications on your SSH server machine to talk to
the agent on your client machine.
Note that at present, agent forwarding in SSH2 is only available when your SSH server is
OpenSSH. The ssh.com server uses a different agent protocol, which PuTTY does not yet
support.
To enable agent forwarding, first start Pageant. Then set up a PuTTY SSH session in which
‘Allow agent forwarding’ is enabled (see section 4.18.3). Open the session as normal.
(Alternatively, you can use the -A command line option; see section 3.7.3.9 for details.)

If this has worked, your applications on the server should now have access to a Unix domain
socket which the SSH server will forward back to PuTTY, and PuTTY will forward on to the
agent. To check that this has actually happened, you can try this command on Unix server
machines:
unixbox:~$ echo $SSH_AUTH_SOCK
/tmp/ssh-XXNP18Jz/agent.28794
unixbox:~$
If the result line comes up blank, agent forwarding has not been enabled at all.
Now if you run ssh on the server and use it to connect through to another server that accepts
one of the keys in Pageant, you should be able to log in without a password:
unixbox:~$ ssh -v otherunixbox
[...]
debug: next auth method to try is publickey
debug: userauth_pubkey_agent: trying agent key my-putty-key
debug: ssh-userauth2 successful: method publickey
[...]
If you enable agent forwarding on that SSH connection as well (see the manual for your server-
side SSH client to find out how to do this), your authentication keys will still be available on the
next machine you connect to - two SSH connections away from where they're actually stored.
In addition, if you have a private key on one of the SSH servers, you can send it all the way back
to Pageant using the local ssh-add command:
unixbox:~$ ssh-add ~/.ssh/id_rsa
Need passphrase for /home/fred/.ssh/id_rsa
Enter passphrase for /home/fred/.ssh/id_rsa:
Identity added: /home/fred/.ssh/id_rsa (/home/simon/.ssh/id_rsa)
unixbox:~$
and then it's available to every machine that has agent forwarding available (not just the ones
downstream of the place you added it).

Section 9.5: Security considerations
Using Pageant for public-key authentication gives you the convenience of being able to open
multiple SSH sessions without having to type a passphrase every time, but also gives you the
security benefit of never storing a decrypted private key on disk. Many people feel this is a good
compromise between security and convenience.
It is a compromise, however. Holding your decrypted private keys in Pageant is better than
storing them in easy-to-find disk files, but still less secure than not storing them anywhere at all.
This is for two reasons:

• Windows unfortunately provides no way to protect pieces of memory from being written
to the system swap file. So if Pageant is holding your private keys for a long period of
time, it's possible that decrypted private key data may be written to the system swap file,
and an attacker who gained access to your hard disk later on might be able to recover that
data. (However, if you stored an unencrypted key in a disk file they would certainly be
able to recover it.)

• Although, like most modern operating systems, Windows prevents programs from
accidentally accessing one another's memory space, it does allow programs to access one
another's memory space deliberately, for special purposes such as debugging. This means
that if you allow a virus, trojan, or other malicious program on to your Windows system
while Pageant is running, it could access the memory of the Pageant process, extract your
decrypted authentication keys, and send them back to its master.

Similarly, use of agent forwarding is a security improvement on other methods of one-touch
authentication, but not perfect. Holding your keys in Pageant on your Windows box has a
security advantage over holding them on the remote server machine itself (either in an agent or
just unencrypted on disk), because if the server machine ever sees your unencrypted private key
then the sysadmin or anyone who cracks the machine can steal the keys and pretend to be you for
as long as they want.
However, the sysadmin of the server machine can always pretend to be you on that machine. So
if you forward your agent to a server machine, then the sysadmin of that machine can access the
forwarded agent connection and request signatures from your public keys, and can therefore log
in to other machines as you. They can only do this to a limited extent - when the agent
forwarding disappears they lose the ability - but using Pageant doesn't actually prevent the
sysadmin (or hackers) on the server from doing this.
Therefore, if you don't trust the sysadmin of a server machine, you should never use agent
forwarding to that machine. (Of course you also shouldn't store private keys on that machine,
type passphrases into it, or log into other machines from it in any way at all; Pageant is hardly
unique in this respect.)

Chapter 10: Common error messages
This chapter lists a number of common error messages which PuTTY and its associated tools can
produce, and explains what they mean in more detail.
We do not attempt to list all error messages here: there are many which should never occur, and
some which should be self-explanatory. If you get an error message which is not listed in this
chapter and which you don't understand, report it to us as a bug (see appendix B) and we will add
documentation for it.
Section 10.1: ‘The server's host key is not cached in the registry’
Section 10.2: ‘WARNING - POTENTIAL SECURITY BREACH!’
Section 10.3: ‘Out of space for port forwardings’
Section 10.4: ‘The first cipher supported by the server is ... below the configured warning
threshold’
Section 10.5: ‘Server sent disconnect message type 2
(SSH_DISCONNECT_PROTOCOL_ERROR): "Too many authentication failures for root"’
Section 10.6: ‘Out of memory’
Section 10.7: ‘Internal error’, ‘Internal fault’, ‘Assertion failed’
Section 10.8: ‘Unable to use this private key file’, ‘Couldn't load private key’, ‘Key is of wrong
type’
Section 10.9: ‘Server refused our public key’ or ‘Key refused’
Section 10.10: ‘Access denied’, ‘Authentication refused’
Section 10.11: ‘Incorrect CRC received on packet’ or ‘Incorrect MAC received on packet’
Section 10.12: ‘Incoming packet was garbled on decryption’
Section 10.13: ‘PuTTY X11 proxy: various errors ’
Section 10.14: ‘Network error: Software caused connection abort’
Section 10.15: ‘Network error: Connection reset by peer’
Section 10.16: ‘Network error: Connection refused’
Section 10.17: ‘Network error: Connection timed out’

Section 10.1: ‘The server's host key is not cached in the registry’
This error message occurs when PuTTY connects to a new SSH server. Every server identifies
itself by means of a host key; once PuTTY knows the host key for a server, it will be able to
detect if a malicious attacker redirects your connection to another machine.
If you see this message, it means that PuTTY has not seen this host key before, and has no way
of knowing whether it is correct or not. You should attempt to verify the host key by other means,
such as asking the machine's administrator.
If you see this message and you know that your installation of PuTTY has connected to the same
server before, it may have been recently upgraded to SSH protocol version 2. SSH protocols 1
and 2 use separate host keys, so when you first use SSH 2 with a server you have only used SSH
1 with before, you will see this message again. You should verify the correctness of the key as
before.
See section 2.2 for more information on host keys.

Section 10.2: ‘WARNING - POTENTIAL SECURITY BREACH!’
This message, followed by ‘The server's host key does not match the one PuTTY has cached in
the registry’, means that PuTTY has connected to the SSH server before, knows what its host key
should be, but has found a different one.
This may mean that a malicious attacker has replaced your server with a different one, or has
redirected your network connection to their own machine. On the other hand, it may simply
mean that the administrator of your server has accidentally changed the key while upgrading the
SSH software; this shouldn't happen but it is unfortunately possible.
You should contact your server's administrator and see whether they expect the host key to have
changed. If so, verify the new host key in the same way as you would if it was new.
See section 2.2 for more information on host keys.

Section 10.3: ‘Out of space for port forwardings’
PuTTY has a fixed-size buffer which it uses to store the details of all port forwardings you have
set up in an SSH session. If you specify too many port forwardings on the PuTTY or Plink
command line and this buffer becomes full, you will see this error message.
We need to fix this (fixed-size buffers are almost always a mistake) but we haven't got round to
it. If you actually have trouble with this, let us know and we'll move it up our priority list.

Section 10.4: ‘The first cipher supported by the server is ... below
the configured warning threshold’
This occurs when the SSH server does not offer any ciphers which you have configured PuTTY
to consider strong enough.
See section 4.17.6 for more information on this message.

Section 10.5: ‘Server sent disconnect message type 2
(SSH_DISCONNECT_PROTOCOL_ERROR): "Too many
authentication failures for root"’
This message is produced by an OpenSSH (or Sun SSH) server if it receives more failed
authentication attempts than it is willing to tolerate. This can easily happen if you are using
Pageant and have a large number of keys loaded into it. This can be worked around on the server
by disabling public-key authentication or (for Sun SSH only) by increasing MaxAuthTries in
sshd_config. Neither of these is a really satisfactory solution, and we hope to provide a
better one in a future version of PuTTY.

Section 10.6: ‘Out of memory’
This occurs when PuTTY tries to allocate more memory than the system can give it. This may
happen for genuine reasons: if the computer really has run out of memory, or if you have
configured an extremely large number of lines of scrollback in your terminal. PuTTY is not able
to recover from running out of memory; it will terminate immediately after giving this error.
However, this error can also occur when memory is not running out at all, because PuTTY
receives data in the wrong format. In SSH 2 and also in SFTP, the server sends the length of each
message before the message itself; so PuTTY will receive the length, try to allocate space for the
message, and then receive the rest of the message. If the length PuTTY receives is garbage, it
will try to allocate a ridiculous amount of memory, and will terminate with an ‘Out of memory’
error.
This can happen in SSH 2, if PuTTY and the server have not enabled encryption in the same way
(see question A.7.5 in the FAQ). Some versions of OpenSSH have a known problem with this:
see question A.7.16.
This can also happen in PSCP or PSFTP, if your login scripts on the server generate output: the
client program will be expecting an SFTP message starting with a length, and if it receives some
text from your login scripts instead it will try to interpret them as a message length. See question
A.7.6 for details of this.

Section 10.7: ‘Internal error’, ‘Internal fault’, ‘Assertion failed’
Any error beginning with the word ‘Internal’ should never occur. If it does, there is a bug in
PuTTY by definition; please see appendix B and report it to us.
Similarly, any error message starting with ‘Assertion failed’ is a bug in PuTTY. Please report it to
us, and include the exact text from the error message box.

Section 10.8: ‘Unable to use this private key file’, ‘Couldn't load
private key’, ‘Key is of wrong type’
Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event Log
(see section 3.1.3.1) when trying public-key authentication, or given by Pageant when trying to
load a private key.
If you see one of these messages, it often indicates that you've tried to load a key of an
inappropriate type into PuTTY, Plink, PSCP, PSFTP, or Pageant.
You may have specified a key that's inappropriate for the connection you're making. The SSH-1
and SSH-2 protocols require different private key formats, and a SSH-1 key can't be used for a
SSH-2 connection (or vice versa).
Alternatively, you may have tried to load an SSH-2 key in a ‘foreign’ format (OpenSSH or
ssh.com) directly into one of the PuTTY tools, in which case you need to import it into
PuTTY's native format (*.PPK) using PuTTYgen - see section 8.2.12.

Section 10.9: ‘Server refused our public key’ or ‘Key refused’
Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event Log
(see section 3.1.3.1) when trying public-key authentication.
If you see one of these messages, it means that PuTTY has sent a public key to the server and
offered to authenticate with it, and the server has refused to accept authentication. This usually
means that the server is not configured to accept this key to authenticate this user.
This is almost certainly not a problem with PuTTY. If you see this type of message, the first
thing you should do is check your server configuration carefully. Also, read the PuTTY Event
Log; the server may have sent diagnostic messages explaining exactly what problem it had with
your setup.

Section 10.10: ‘Access denied’, ‘Authentication refused’
Various forms of this error are printed in the PuTTY window, or written to the PuTTY Event Log
(see section 3.1.3.1) during authentication.
If you see one of these messages, it means that the server has refused all the forms of
authentication PuTTY has tried and it has no further ideas.
It may be worth checking the Event Log for diagnostic messages from the server giving more
detail.
This error can be caused by buggy SSH-1 servers that fail to cope with the various strategies we
use for camouflaging passwords in transit. Upgrade your server, or use the workarounds
described in section 4.20.1 and possibly section 4.20.2.

Section 10.11: ‘Incorrect CRC received on packet’ or ‘Incorrect
MAC received on packet’
This error occurs when PuTTY decrypts an SSH packet and its checksum is not correct. This
probably means something has gone wrong in the encryption or decryption process. It's difficult
to tell from this error message whether the problem is in the client or in the server.
A known server problem which can cause this error is described in question A.7.16 in the FAQ.

Section 10.12: ‘Incoming packet was garbled on decryption’
This error occurs when PuTTY decrypts an SSH packet and the decrypted data makes no sense.
This probably means something has gone wrong in the encryption or decryption process. It's
difficult to tell from this error message whether the problem is in the client, in the server, or in
between.
If you get this error, one thing you could try would be to fiddle with the setting of ‘Miscomputes
SSH2 encryption keys’ on the Bugs panel (see section 4.20.5).
Another known server problem which can cause this error is described in question A.7.16 in the
FAQ.

Section 10.13: ‘PuTTY X11 proxy: various errors’
This family of errors are reported when PuTTY is doing X forwarding. They are sent back to the
X application running on the SSH server, which will usually report the error to the user.
When PuTTY enables X forwarding (see section 3.4) it creates a virtual X display running on the
SSH server. This display requires authentication to connect to it (this is how PuTTY prevents
other users on your server machine from connecting through the PuTTY proxy to your real X
display). PuTTY also sends the server the details it needs to enable clients to connect, and the
server should put this mechanism in place automatically, so your X applications should just
work.
A common reason why people see one of these messages is because they used SSH to log in as
one user (let's say ‘fred’), and then used the Unix su command to become another user (typically
‘root’). The original user, ‘fred’, has access to the X authentication data provided by the SSH
server, and can run X applications which are forwarded over the SSH connection. However, the
second user (‘root’) does not automatically have the authentication data passed on to it, so
attempting to run an X application as that user often fails with this error.
If this happens, it is not a problem with PuTTY. You need to arrange for your X authentication
data to be passed from the user you logged in as to the user you used su to become. How you do
this depends on your particular system; in fact many modern versions of su do it automatically.

Section 10.14: ‘Network error: Software caused connection abort’
This error occurs when the Windows network code decides that your network connection is dead.
For example, it will happen if you pull the network cable out of the back of an Ethernet-
connected computer, or if Windows has any other similar reason to believe the entire network has
become unreachable.
We are not aware of any reason why this error might occur that would represent a bug in PuTTY.
The problem is between you, your Windows system, your network and the remote system.

Section 10.15: ‘Network error: Connection reset by peer’
This error occurs when the machines at each end of a network connection lose track of the state
of the connection between them. For example, you might see it if your SSH server crashes, and
manages to reboot fully before you next attempt to send data to it.
However, the most common reason to see this message is if you are connecting through a
firewall or a NAT router which has timed the connection out. See question A.7.10 in the FAQ for
more details. You may be able to improve the situation by using keepalives; see section 4.13.5
for details on this.

Section 10.16: ‘Network error: Connection refused’
This error means that the network connection PuTTY tried to make to your server was rejected
by the server. Usually this happens because the server does not provide the service which PuTTY
is trying to access.
Check that you are connecting with the correct protocol (SSH, Telnet or Rlogin), and check that
the port number is correct. If that fails, consult the administrator of your server.

Section 10.17: ‘Network error: Connection timed out’
This error means that the network connection PuTTY tried to make to your server received no
response at all from the server. Usually this happens because the server machine is completely
isolated from the network, or because it is turned off.
Check that you have correctly entered the host name or IP address of your server machine. If that
fails, consult the administrator of your server.

Appendix A: PuTTY FAQ
This FAQ is published on the PuTTY web site, and also provided as an appendix in the manual.
Section A.1: Introduction
Section A.2: Features supported in PuTTY
Section A.3: Ports to other operating systems
Section A.4: Embedding PuTTY in other programs
Section A.5: Details of PuTTY's operation
Section A.6: HOWTO questions
Section A.7: Troubleshooting
Section A.8: Security questions
Section A.9: Administrative questions
Section A.10: Miscellaneous questions

Section A.1: Introduction
Question A.1.1: What is PuTTY?

Question A.1.1: What is PuTTY?
PuTTY is a client program for the SSH, Telnet and Rlogin network protocols.
These protocols are all used to run a remote session on a computer, over a network. PuTTY
implements the client end of that session: the end at which the session is displayed, rather than
the end at which it runs.
In really simple terms: you run PuTTY on a Windows machine, and tell it to connect to (for
example) a Unix machine. PuTTY opens a window. Then, anything you type into that window is
sent straight to the Unix machine, and everything the Unix machine sends back is displayed in
the window. So you can work on the Unix machine as if you were sitting at its console, while
actually sitting somewhere else.

Section A.2: Features supported in PuTTY
In general, if you want to know if PuTTY supports a particular feature, you should look for it on
the PuTTY web site. In particular:

• try the changes page, and see if you can find the feature on there. If a feature is listed
there, it's been implemented. If it's listed as a change made since the latest version, it
should be available in the development snapshots, in which case testing will be very
welcome.

• try the Wishlist page, and see if you can find the feature there. If it's on there, and not in
the ‘Recently fixed’ section, it probably hasn't been implemented.

Question A.2.1: Does PuTTY support SSH v2?
Question A.2.2: Does PuTTY support reading OpenSSH or ssh.com SSHv2 private key files?
Question A.2.3: Does PuTTY support SSH v1?
Question A.2.4: Does PuTTY support local echo?
Question A.2.5: Does PuTTY support storing settings, so I don't have to change them every
time?
Question A.2.6: Does PuTTY support storing its settings in a disk file?
Question A.2.7: Does PuTTY support full-screen mode, like a DOS box?
Question A.2.8: Does PuTTY have the ability to remember my password so I don't have to type it
every time?
Question A.2.9: Is there an option to turn off the annoying host key prompts?
Question A.2.10: Will you write an SSH server for the PuTTY suite, to go with the client?
Question A.2.11: Can PSCP or PSFTP transfer files in ASCII mode?

Question A.2.1: Does PuTTY support SSH v2?
Yes. SSH v2 support has been available in PuTTY since version 0.50.
Public key authentication (both RSA and DSA) in SSH v2 is new in version 0.52.

Question A.2.2: Does PuTTY support reading OpenSSH or
ssh.com SSHv2 private key files?
PuTTY doesn't support this natively, but as of 0.53 PuTTYgen can convert both OpenSSH and
ssh.com private key files into PuTTY's format.

Question A.2.3: Does PuTTY support SSH v1?
Yes. SSH 1 support has always been available in PuTTY.

Question A.2.4: Does PuTTY support local echo?
Yes. Version 0.52 has proper support for local echo.
In version 0.51 and before, local echo could not be separated from local line editing (where you
type a line of text locally, and it is not sent to the server until you press Return, so you have the
chance to edit it and correct mistakes before the server sees it). New in version 0.52, local echo
and local line editing are separate options, and by default PuTTY will try to determine
automatically whether to enable them or not, based on which protocol you have selected and also
based on hints from the server. If you have a problem with PuTTY's default choice, you can
force each option to be enabled or disabled as you choose. The controls are in the Terminal panel,
in the section marked ‘Line discipline options’.

Question A.2.5: Does PuTTY support storing settings, so I don't
have to change them every time?
Yes, all of PuTTY's settings can be saved in named session profiles. See section 4.1.2 in the
documentation for how to do this.

Question A.2.6: Does PuTTY support storing its settings in a disk
file?
Not at present, although section 4.21 in the documentation gives a method of achieving the same
effect.

Question A.2.7: Does PuTTY support full-screen mode, like a
DOS box?
Yes; this is a new feature in version 0.52.

Question A.2.8: Does PuTTY have the ability to remember my
password so I don't have to type it every time?
No, it doesn't.
Remembering your password is a bad plan for obvious security reasons: anyone who gains
access to your machine while you're away from your desk can find out the remembered
password, and use it, abuse it or change it.
In addition, it's not even possible for PuTTY to automatically send your password in a Telnet
session, because Telnet doesn't give the client software any indication of which part of the login
process is the password prompt. PuTTY would have to guess, by looking for words like
‘password’ in the session data; and if your login program is written in something other than
English, this won't work.
In SSH, remembering your password would be possible in theory, but there doesn't seem to be
much point since SSH supports public key authentication, which is more flexible and more
secure. See chapter 8 in the documentation for a full discussion of public key authentication.

Question A.2.9: Is there an option to turn off the annoying host
key prompts?
No, there isn't. And there won't be. Even if you write it yourself and send us the patch, we won't
accept it.
Those annoying host key prompts are the whole point of SSH. Without them, all the
cryptographic technology SSH uses to secure your session is doing nothing more than making an
attacker's job slightly harder; instead of sitting between you and the server with a packet sniffer,
the attacker must actually subvert a router and start modifying the packets going back and forth.
But that's not all that much harder than just sniffing; and without host key checking, it will go
completely undetected by client or server.
Host key checking is your guarantee that the encryption you put on your data at the client end is
the same encryption taken off the data at the server end; it's your guarantee that it hasn't been
removed and replaced somewhere on the way. Host key checking makes the attacker's job
astronomically hard, compared to packet sniffing, and even compared to subverting a router.
Instead of applying a little intelligence and keeping an eye on Bugtraq, the attacker must now
perform a brute-force attack against at least one military-strength cipher. That insignificant host
key prompt really does make that much difference.
If you're having a specific problem with host key checking - perhaps you want an automated
batch job to make use of PSCP or Plink, and the interactive host key prompt is hanging the batch
process - then the right way to fix it is to add the correct host key to the Registry in advance.
That way, you retain the important feature of host key checking: the right key will be accepted
and the wrong ones will not. Adding an option to turn host key checking off completely is the
wrong solution and we will not do it.
If you have host keys available in the common known_hosts format, we have a script called
kh2reg.py to convert them to a Windows .REG file, which can be installed ahead of time by
double-clicking or using REGEDIT.

Question A.2.10: Will you write an SSH server for the PuTTY
suite, to go with the client?
No. The only reason we might want to would be if we could easily re-use existing code and
significantly cut down the effort. We don't believe this is the case; there just isn't enough
common ground between an SSH client and server to make it worthwhile.
If someone else wants to use bits of PuTTY in the process of writing a Windows SSH server,
they'd be perfectly welcome to of course, but I really can't see it being a lot less effort for us to
do that than it would be for us to write a server from the ground up. We don't have time, and we
don't have motivation. The code is available if anyone else wants to try it.

Question A.2.11: Can PSCP or PSFTP transfer files in ASCII
mode?
Unfortunately not.
Until recently, this was a limitation of the file transfer protocols: the SCP and SFTP protocols
had no notion of transferring a file in anything other than binary mode. (This is still true of SCP.)
The current draft protocol spec of SFTP proposes a means of implementing ASCII transfer. At
some point PSCP/PSFTP may implement this proposal.

Section A.3: Ports to other operating systems
The eventual goal is for PuTTY to be a multi-platform program, able to run on at least Windows,
Mac OS and Unix.
Porting will become easier once PuTTY has a generalised porting layer, drawing a clear line
between platform-dependent and platform-independent code. The general intention was for this
porting layer to evolve naturally as part of the process of doing the first port; a Unix port has now
been released and the plan seems to be working so far.
Question A.3.1: What ports of PuTTY exist?
Question A.3.2: Is there a port to Unix?
Question A.3.3: What's the point of the Unix port? Unix has OpenSSH.
Question A.3.4: Will there be a port to Windows CE or PocketPC?
Question A.3.5: Is there a port to Windows 3.1?
Question A.3.6: Will there be a port to the Mac?
Question A.3.7: Will there be a port to EPOC?

Question A.3.1: What ports of PuTTY exist?
Currently, release versions of PuTTY tools only run on full Win32 systems and Unix. ‘Win32’
includes Windows 95, 98, and ME, and it includes Windows NT, Windows 2000 and Windows
XP.
In the development code, a partial port to the Mac OS (see question A.3.6) is under way.
Currently PuTTY does not run on Windows CE (see question A.3.4), and it does not quite run on
the Win32s environment under Windows 3.1 (see question A.3.5).
We do not have release-quality ports for any other systems at the present time. If anyone told you
we had an EPOC port, or an iPaq port, or any other port of PuTTY, they were mistaken. We
don't.
There are some third-party ports to various platforms, mentioned on the Links page of our
website.

Question A.3.2: Is there a port to Unix?
As of 0.54, there are Unix ports of most of the traditional PuTTY tools, and also one entirely new
application.
If you look at the source release, you should find a unix subdirectory containing
Makefile.gtk, which should build you Unix ports of Plink, PuTTY itself, PuTTYgen, PSCP,
PSFTP, and also pterm - an xterm-type program which supports the same terminal emulation
as PuTTY. We do not yet have a Unix port of Pageant.
If you don't have Gtk, you should still be able to build the command-line tools.
Note that Unix PuTTY has mostly only been tested on Linux so far; portability problems such as
BSD-style ptys or different header file requirements are expected.

Question A.3.3: What's the point of the Unix port? Unix has
OpenSSH.
All sorts of little things. pterm is directly useful to anyone who prefers PuTTY's terminal
emulation to xterm's, which at least some people do. Unix Plink has apparently found a niche
among people who find the complexity of OpenSSL makes OpenSSH hard to install (and who
don't mind Plink not having as many features). Some users want to generate a large number of
SSH keys on Unix and then copy them all into PuTTY, and the Unix PuTTYgen should allow
them to automate that conversion process.
There were development advantages as well; porting PuTTY to Unix was a valuable path-finding
effort for other future ports, and also allowed us to use the excellent Linux tool Valgrind to help
with debugging, which has already improved PuTTY's stability on all platforms.
However, if you're a Unix user and you can see no reason to switch from OpenSSH to
PuTTY/Plink, then you're probably right. We don't expect our Unix port to be the right thing for
everybody.

Question A.3.4: Will there be a port to Windows CE or PocketPC?
It's currently being worked on, but it's only in its early stages yet, and certainly isn't yet useful.
PuTTY on portable devices would clearly be a useful thing, so in the long term I hope it can be
brought up to release quality.
There's also a third-party port at http://pocketputty.duxy.net/.

Question A.3.5: Is there a port to Windows 3.1?
PuTTY is a 32-bit application from the ground up, so it won't run on Windows 3.1 as a native 16-
bit program; and it would be very hard to port it to do so, because of Windows 3.1's vile memory
allocation mechanisms.
However, it is possible in theory to compile the existing PuTTY source in such a way that it will
run under Win32s (an extension to Windows 3.1 to let you run 32-bit programs). In order to do
this you'll need the right kind of C compiler - modern versions of Visual C at least have stopped
being backwards compatible to Win32s. Also, the last time we tried this it didn't work very well.
If you're interested in running PuTTY under Windows 3.1, help and testing in this area would be
very welcome!

Question A.3.6: Will there be a port to the Mac?
There is a port to the Mac OS in progress. It's just about usable, but has an awful lot of gaps and
rough edges that will need cleaning up before release (such as useful random numbers).
A separate port to Mac OS X is also underway.

Question A.3.7: Will there be a port to EPOC?
I hope so, but given that ports aren't really progressing very fast even on systems the developers
do already know how to program for, it might be a long time before any of us get round to
learning a new system and doing the port for that.
However, some of the work has been done by other people, and a beta port of PuTTY for the
Nokia 9200 Communicator series is available from
http://s2putty.sourceforge.net/

Section A.4: Embedding PuTTY in other programs
Question A.4.1: Is the SSH or Telnet code available as a DLL?
Question A.4.2: Is the SSH or Telnet code available as a Visual Basic component?
Question A.4.3: How can I use PuTTY to make an SSH connection from within another
program?

Question A.4.1: Is the SSH or Telnet code available as a DLL?
No, it isn't. It would take a reasonable amount of rewriting for this to be possible, and since the
PuTTY project itself doesn't believe in DLLs (they make installation more error-prone) none of
us has taken the time to do it.
Most of the code cleanup work would be a good thing to happen in general, so if anyone feels
like helping, we wouldn't say no.

Question A.4.2: Is the SSH or Telnet code available as a Visual
Basic component?
No, it isn't. None of the PuTTY team uses Visual Basic, and none of us has any particular need to
make SSH connections from a Visual Basic application. In addition, all the preliminary work to
turn it into a DLL would be necessary first; and furthermore, we don't even know how to write
VB components.
If someone offers to do some of this work for us, we might consider it, but unless that happens I
can't see VB integration being anywhere other than the very bottom of our priority list.

Question A.4.3: How can I use PuTTY to make an SSH connection
from within another program?
Probably your best bet is to use Plink, the command-line connection tool. If you can start Plink
as a second Windows process, and arrange for your primary process to be able to send data to the
Plink process, and receive data from it, through pipes, then you should be able to make SSH
connections from your program.
This is what CVS for Windows does, for example.

Section A.5: Details of PuTTY's operation
Question A.5.1: What terminal type does PuTTY use?
Question A.5.2: Where does PuTTY store its data?

Question A.5.1: What terminal type does PuTTY use?
For most purposes, PuTTY can be considered to be an xterm terminal.

PuTTY also supports some terminal control sequences not supported by the real xterm: notably
the Linux console sequences that reconfigure the colour palette, and the title bar control
sequences used by DECterm (which are different from the xterm ones; PuTTY supports both).

By default, PuTTY announces its terminal type to the server as xterm. If you have a problem
with this, you can reconfigure it to say something else; vt220 might help if you have trouble.

Question A.5.2: Where does PuTTY store its data?
On Windows, PuTTY stores most of its data (saved sessions, SSH host keys) in the Registry. The
precise location is
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY
and within that area, saved sessions are stored under Sessions while host keys are stored
under SshHostKeys.

PuTTY also requires a random number seed file, to improve the unpredictability of randomly
chosen data needed as part of the SSH cryptography. This is stored by default in your Windows
home directory (%HOMEDRIVE%\%HOMEPATH%), or in the actual Windows directory (such as
C:\WINDOWS) if the home directory doesn't exist, for example if you're using Win95. If you
want to change the location of the random number seed file, you can put your chosen pathname
in the Registry, at
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\RandSeedFile
On Unix, PuTTY stores all of this data in a directory ~/.putty.

Section A.6: HOWTO questions
Question A.6.1: How can I make PuTTY start up maximised?
Question A.6.2: How can I create a Windows shortcut to start a particular saved session directly?
Question A.6.3: How can I start an SSH session straight from the command line?
Question A.6.4: How do I copy and paste between PuTTY and other Windows applications?
Question A.6.5: How do I use all PuTTY's features (public keys, proxying, cipher selection, etc.)
in PSCP, PSFTP and Plink?
Question A.6.6: How do I use PSCP.EXE? When I double-click it gives me a command prompt
window which then closes instantly.
Question A.6.7: How do I use PSCP to copy a file whose name has spaces in?

Question A.6.1: How can I make PuTTY start up maximised?
Create a Windows shortcut to start PuTTY from, and set it as ‘Run Maximized’.

Question A.6.2: How can I create a Windows shortcut to start a
particular saved session directly?
To run a PuTTY session saved under the name ‘mysession’, create a Windows shortcut that
invokes PuTTY with a command line like
\path\name\to\putty.exe -load mysession
(Note: prior to 0.53, the syntax was @session. This is now deprecated and may be removed at
some point.)

Question A.6.3: How can I start an SSH session straight from the
command line?
Use the command line putty -ssh host.name. Alternatively, create a saved session that
specifies the SSH protocol, and start the saved session as shown in question A.6.2.

Question A.6.4: How do I copy and paste between PuTTY and
other Windows applications?
Copy and paste works similarly to the X Window System. You use the left mouse button to select
text in the PuTTY window. The act of selection automatically copies the text to the clipboard:
there is no need to press Ctrl-Ins or Ctrl-C or anything else. In fact, pressing Ctrl-C will send a
Ctrl-C character to the other end of your connection (just like it does the rest of the time), which
may have unpleasant effects. The only thing you need to do, to copy text to the clipboard, is to
select it.
To paste the clipboard contents into a PuTTY window, by default you click the right mouse
button. If you have a three-button mouse and are used to X applications, you can configure
pasting to be done by the middle button instead, but this is not the default because most Windows
users don't have a middle button at all.
You can also paste by pressing Shift-Ins.

Question A.6.5: How do I use all PuTTY's features (public keys,
proxying, cipher selection, etc.) in PSCP, PSFTP and Plink?
Most major features (e.g., public keys, port forwarding) are available through command line
options. See the documentation.
Not all features are accessible from the command line yet, although we'd like to fix this. In the
meantime, you can use most of PuTTY's features if you create a PuTTY saved session, and then
use the name of the saved session on the command line in place of a hostname. This works for
PSCP, PSFTP and Plink (but don't expect port forwarding in the file transfer applications!).

Question A.6.6: How do I use PSCP.EXE? When I double-click it
gives me a command prompt window which then closes
instantly.
PSCP is a command-line application, not a GUI application. If you run it without arguments, it
will simply print a help message and terminate.
To use PSCP properly, run it from a Command Prompt window. See chapter 5 in the
documentation for more details.

Question A.6.7: How do I use PSCP to copy a file whose name
has spaces in?
If PSCP is using the traditional SCP protocol, this is confusing. If you're specifying a file at the
local end, you just use one set of quotes as you would normally do:
pscp "local filename with spaces" user@host:
pscp user@host:myfile "local filename with spaces"
But if the filename you're specifying is on the remote side, you have to use backslashes and two
sets of quotes:
pscp user@host:"\"remote filename with spaces\"" local_filename
pscp local_filename user@host:"\"remote filename with spaces\""
Worse still, in a remote-to-local copy you have to specify the local file name explicitly, otherwise
PSCP will complain that they don't match (unless you specified the -unsafe option). The
following command will give an error message:
c:\>pscp user@host:"\"oo er\"" .
warning: remote host tried to write to a file called 'oo er'
 when we requested a file called '"oo er"'.
Instead, you need to specify the local file name in full:
c:\>pscp user@host:"\"oo er\"" "oo er"
If PSCP is using the newer SFTP protocol, none of this is a problem, and all filenames with
spaces in are specified using a single pair of quotes in the obvious way:
pscp "local file" user@host:
pscp user@host:"remote file" .

Section A.7: Troubleshooting
Question A.7.1: Why do I see ‘Incorrect MAC received on packet’?
Question A.7.2: Why do I see ‘Fatal: Protocol error: Expected control record’ in PSCP?
Question A.7.3: I clicked on a colour in the Colours panel, and the colour didn't change in my
terminal.
Question A.7.4: Plink on Windows 95 says it can't find WS2_32.DLL .
Question A.7.5: After trying to establish an SSH 2 connection, PuTTY says ‘Out of memory’ and
dies.
Question A.7.6: When attempting a file transfer, either PSCP or PSFTP says ‘Out of memory’
and dies.
Question A.7.7: PSFTP transfers files much slower than PSCP.
Question A.7.8: When I run full-colour applications, I see areas of black space where colour
ought to be.
Question A.7.9: When I change some terminal settings, nothing happens.
Question A.7.10: My PuTTY sessions unexpectedly close after they are idle for a while.
Question A.7.11: PuTTY's network connections time out too quickly when network connectivity
is temporarily lost.
Question A.7.12: When I cat a binary file, I get `PuTTYPuTTYPuTTY' on my command line.
Question A.7.13: When I cat a binary file, my window title changes to a nonsense string.
Question A.7.14: My keyboard stops working once PuTTY displays the password prompt.
Question A.7.15: One or more function keys don't do what I expected in a server-side
application.
Question A.7.16: Since my SSH server was upgraded to OpenSSH 3.1p1/3.4p1, I can no longer
connect with PuTTY.
Question A.7.17: Why do I see "Couldn't load private key from ..."? Why can PuTTYgen load
my key but not PuTTY?
Question A.7.18: When I'm connected to a Red Hat Linux 8.0 system, some characters don't
display properly.
Question A.7.19: Since I upgraded to PuTTY 0.54, the scrollback has stopped working when I
run screen .
Question A.7.20: Since I upgraded Windows XP to Service Pack 2, I can't use addresses like
127.0.0.2 .
Question A.7.21: PSFTP commands seem to be missing a directory separator (slash).

Question A.7.1: Why do I see ‘Incorrect MAC received on
packet’?
One possible cause of this that used to be common is a bug in old SSH 2 servers distributed by
ssh.com. (This is not the only possible cause; see section 10.11 in the documentation.) Version
2.3.0 and below of their SSH 2 server constructs Message Authentication Codes in the wrong
way, and expects the client to construct them in the same wrong way. PuTTY constructs the
MACs correctly by default, and hence these old servers will fail to work with it.
If you are using PuTTY version 0.52 or better, this should work automatically: PuTTY should
detect the buggy servers from their version number announcement, and automatically start to
construct its MACs in the same incorrect manner as they do, so it will be able to work with them.
If you are using PuTTY version 0.51 or below, you can enable the workaround by going to the
SSH panel and ticking the box labelled ‘Imitate SSH 2 MAC bug’. It's possible that you might
have to do this with 0.52 as well, if a buggy server exists that PuTTY doesn't know about.
In this context MAC stands for Message Authentication Code. It's a cryptographic term, and it
has nothing at all to do with Ethernet MAC (Media Access Control) addresses.

Question A.7.2: Why do I see ‘Fatal: Protocol error: Expected
control record’ in PSCP?
This happens because PSCP was expecting to see data from the server that was part of the PSCP
protocol exchange, and instead it saw data that it couldn't make any sense of at all.
This almost always happens because the startup scripts in your account on the server machine are
generating output. This is impossible for PSCP, or any other SCP client, to work around. You
should never use startup files (.bashrc, .cshrc and so on) which generate output in non-
interactive sessions.
This is not actually a PuTTY problem. If PSCP fails in this way, then all other SCP clients are
likely to fail in exactly the same way. The problem is at the server end.

Question A.7.3: I clicked on a colour in the Colours panel, and the
colour didn't change in my terminal.
That isn't how you're supposed to use the Colours panel.
During the course of a session, PuTTY potentially uses all the colours listed in the Colours panel.
It's not a question of using only one of them and you choosing which one; PuTTY will use them
all. The purpose of the Colours panel is to let you adjust the appearance of all the colours. So to
change the colour of the cursor, for example, you would select ‘Cursor Colour’, press the
‘Modify’ button, and select a new colour from the dialog box that appeared. Similarly, if you
want your session to appear in green, you should select ‘Default Foreground’ and press ‘Modify’.
Clicking on ‘ANSI Green’ won't turn your session green; it will only allow you to adjust the
shade of green used when PuTTY is instructed by the server to display green text.

Question A.7.4: Plink on Windows 95 says it can't find
WS2_32.DLL.
Plink requires the extended Windows network library, WinSock version 2. This is installed as
standard on Windows 98 and above, and on Windows NT, and even on later versions of Windows
95; but early Win95 installations don't have it.
In order to use Plink on these systems, you will need to download the WinSock 2 upgrade:
http://www.microsoft.com/windows95/downloads/contents/
 wuadmintools/s_wunetworkingtools/w95sockets2/

Question A.7.5: After trying to establish an SSH 2 connection,
PuTTY says ‘Out of memory’ and dies.
If this happens just while the connection is starting up, this often indicates that for some reason
the client and server have failed to establish a session encryption key. Somehow, they have
performed calculations that should have given each of them the same key, but have ended up
with different keys; so data encrypted by one and decrypted by the other looks like random
garbage.
This causes an ‘out of memory’ error because the first encrypted data PuTTY expects to see is
the length of an SSH message. Normally this will be something well under 100 bytes. If the
decryption has failed, PuTTY will see a completely random length in the region of two
gigabytes, and will try to allocate enough memory to store this non-existent message. This will
immediately lead to it thinking it doesn't have enough memory, and panicking.
If this happens to you, it is quite likely to still be a PuTTY bug and you should report it (although
it might be a bug in your SSH server instead); but it doesn't necessarily mean you've actually run
out of memory.

Question A.7.6: When attempting a file transfer, either PSCP or
PSFTP says ‘Out of memory’ and dies.
This is almost always caused by your login scripts on the server generating output. PSCP or
PSFTP will receive that output when they were expecting to see the start of a file transfer
protocol, and they will attempt to interpret the output as file-transfer protocol. This will usually
lead to an ‘out of memory’ error for much the same reasons as given in question A.7.5.
This is a setup problem in your account on your server, not a PSCP/PSFTP bug. Your login
scripts should never generate output during non-interactive sessions; secure file transfer is not the
only form of remote access that will break if they do.
On Unix, a simple fix is to ensure that all the parts of your login script that might generate output
are in .profile (if you use a Bourne shell derivative) or .login (if you use a C shell).
Putting them in more general files such as .bashrc or .cshrc is liable to lead to problems.

Question A.7.7: PSFTP transfers files much slower than PSCP.
The throughput of PSFTP 0.54 should be much better than 0.53b and prior; we've added code to
the SFTP backend to queue several blocks of data rather than waiting for an acknowledgement
for each. (The SCP backend did not suffer from this performance issue because SCP is a much
simpler protocol.)

Question A.7.8: When I run full-colour applications, I see areas of
black space where colour ought to be.
You almost certainly need to enable the ‘Use background colour to erase screen’ setting in the
Terminal panel. Note that if you do this in mid-session, in versions before 0.54, it may not take
effect until you reset the terminal (see question A.7.9).

Question A.7.9: When I change some terminal settings, nothing
happens.
Some of the terminal options (notably Auto Wrap and background-colour screen erase) actually
represent the default setting, rather than the currently active setting. The server can send
sequences that modify these options in mid-session, but when the terminal is reset (by server
action, or by you choosing ‘Reset Terminal’ from the System menu) the defaults are restored.
In versions 0.53b and prior, if you change one of these options in the middle of a session, you
will find that the change does not immediately take effect. It will only take effect once you reset
the terminal.
In version 0.54, the behaviour has changed - changes to these settings take effect immediately.

Question A.7.10: My PuTTY sessions unexpectedly close after
they are idle for a while.
Some types of firewall, and almost any router doing Network Address Translation (NAT, also
known as IP masquerading), will forget about a connection through them if the connection does
nothing for too long. This will cause the connection to be rudely cut off when contact is resumed.
You can try to combat this by telling PuTTY to send keepalives: packets of data which have no
effect on the actual session, but which reassure the router or firewall that the network connection
is still active and worth remembering about.
Keepalives don't solve everything, unfortunately; although they cause greater robustness against
this sort of router, they can also cause a loss of robustness against network dropouts. See section
4.13.5 in the documentation for more discussion of this.

Question A.7.11: PuTTY's network connections time out too
quickly when network connectivity is temporarily lost.
This is a Windows problem, not a PuTTY problem. The timeout value can't be set on per
application or per session basis. To increase the TCP timeout globally, you need to tinker with the
Registry.
On Windows 95, 98 or ME, the registry key you need to create or change is
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\
 MSTCP\MaxDataRetries
(it must be of type DWORD in Win95, or String in Win98/ME). (See MS Knowledge Base
article 158474 for more information.)
On Windows NT or 2000, the registry key is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\
 Parameters\TcpMaxDataRetransmissions
and it must be of type DWORD. (See MS Knowledge Base article 120642 for more information.)
Set the key's value to something like 10. This will cause Windows to try harder to keep
connections alive instead of abandoning them.

Question A.7.12: When I cat a binary file, I get
`PuTTYPuTTYPuTTY' on my command line.
Don't do that, then.
This is designed behaviour; when PuTTY receives the character Control-E from the remote
server, it interprets it as a request to identify itself, and so it sends back the string ‘PuTTY’ as if
that string had been entered at the keyboard. Control-E should only be sent by programs that are
prepared to deal with the response. Writing a binary file to your terminal is likely to output many
Control-E characters, and cause this behaviour. Don't do it. It's a bad plan.
To mitigate the effects, you could configure the answerback string to be empty (see section
4.3.6); but writing binary files to your terminal is likely to cause various other unpleasant
behaviour, so this is only a small remedy.

Question A.7.13: When I cat a binary file, my window title
changes to a nonsense string.
Don't do that, then.
It is designed behaviour that PuTTY should have the ability to adjust the window title on
instructions from the server. Normally the control sequence that does this should only be sent
deliberately, by programs that know what they are doing and intend to put meaningful text in the
window title. Writing a binary file to your terminal runs the risk of sending the same control
sequence by accident, and cause unexpected changes in the window title. Don't do it.

Question A.7.14: My keyboard stops working once PuTTY
displays the password prompt.
No, it doesn't. PuTTY just doesn't display the password you type, so that someone looking at
your screen can't see what it is.
Unlike the Windows login prompts, PuTTY doesn't display the password as a row of asterisks
either. This is so that someone looking at your screen can't even tell how long your password is,
which might be valuable information.

Question A.7.15: One or more function keys don't do what I
expected in a server-side application.
If you've already tried all the relevant options in the PuTTY Keyboard panel, you may need to
mail the PuTTY maintainers and ask.
It is not usually helpful just to tell us which application, which server operating system, and
which key isn't working; in order to replicate the problem we would need to have a copy of every
operating system, and every application, that anyone has ever complained about.
PuTTY responds to function key presses by sending a sequence of control characters to the
server. If a function key isn't doing what you expect, it's likely that the character sequence your
application is expecting to receive is not the same as the one PuTTY is sending. Therefore what
we really need to know is what sequence the application is expecting.
The simplest way to investigate this is to find some other terminal environment, in which that
function key does work; and then investigate what sequence the function key is sending in that
situation. One reasonably easy way to do this on a Unix system is to type the command cat, and
then press the function key. This is likely to produce output of the form ^[[11~. You can also
do this in PuTTY, to find out what sequence the function key is producing in that. Then you can
mail the PuTTY maintainers and tell us ‘I wanted the F1 key to send ^[[11~, but instead it's
sending ^[OP, can this be done?’, or something similar.

You should still read the Feedback page on the PuTTY website (also provided as appendix B in
the manual), and follow the guidelines contained in that.

Question A.7.16: Since my SSH server was upgraded to
OpenSSH 3.1p1/3.4p1, I can no longer connect with PuTTY.
There is a known problem when OpenSSH has been built against an incorrect version of
OpenSSL; the quick workaround is to configure PuTTY to use SSH protocol 2 and the Blowfish
cipher.
For more details and OpenSSH patches, see bug 138 in the OpenSSH BTS.
This is not a PuTTY-specific problem; if you try to connect with another client you'll likely have
similar problems. (Although PuTTY's default cipher differs from many other clients.)
OpenSSH 3.1p1: configurations known to be broken (and symptoms):

• SSH 2 with AES cipher (PuTTY says "Assertion failed! Expression: (len & 15) == 0" in
sshaes.c, or "Out of memory", or crashes)

• SSH 2 with 3DES (PuTTY says "Incorrect MAC received on packet")
• SSH 1 with Blowfish (PuTTY says "Incorrect CRC received on packet")
• SSH 1 with 3DES

OpenSSH 3.4p1: as of 3.4p1, only the problem with SSH 1 and Blowfish remains. Rebuild your
server, apply the patch linked to from bug 138 above, or use another cipher (e.g., 3DES) instead.
Other versions: we occasionally get reports of the same symptom and workarounds with older
versions of OpenSSH, although it's not clear the underlying cause is the same.

Question A.7.17: Why do I see "Couldn't load private key
from ..."? Why can PuTTYgen load my key but not PuTTY?
It's likely that you've generated an SSH protocol 2 key with PuTTYgen, but you're trying to use
it in an SSH 1 connection. SSH1 and SSH2 keys have different formats, and (at least in 0.52)
PuTTY's reporting of a key in the wrong format isn't optimal.
To connect using SSH 2 to a server that supports both versions, you need to change the
configuration from the default (see question A.2.1).

Question A.7.18: When I'm connected to a Red Hat Linux 8.0
system, some characters don't display properly.
A common complaint is that hyphens in man pages show up as a-acute.
With release 8.0, Red Hat appear to have made UTF-8 the default character set. There appears to
be no way for terminal emulators such as PuTTY to know this (as far as we know, the
appropriate escape sequence to switch into UTF-8 mode isn't sent).
A fix is to configure sessions to RH8 systems to use UTF-8 translation - see section 4.10.1 in the
documentation. (Note that if you use ‘Change Settings’, changes may not take place immediately
- see question A.7.9.)
If you really want to change the character set used by the server, the right place is
/etc/sysconfig/i18n, but this shouldn't be necessary.

Question A.7.19: Since I upgraded to PuTTY 0.54, the scrollback
has stopped working when I run screen.
PuTTY's terminal emulator has always had the policy that when the ‘alternate screen’ is in use,
nothing is added to the scrollback. This is because the usual sorts of programs which use the
alternate screen are things like text editors, which tend to scroll back and forth in the same
document a lot; so (a) they would fill up the scrollback with a large amount of unhelpfully
disordered text, and (b) they contain their own method for the user to scroll back to the bit they
were interested in. We have generally found this policy to do the Right Thing in almost all
situations.
Unfortunately, screen is one exception: it uses the alternate screen, but it's still usually helpful
to have PuTTY's scrollback continue working. The simplest solution is to go to the Features
control panel and tick ‘Disable switching to alternate terminal screen’. (See section 4.6.4 for
more details.)
The reason why this only started to be a problem in 0.54 is because screen typically uses an
unusual control sequence to switch to the alternate screen, and previous versions of PuTTY did
not support this sequence.

Question A.7.20: Since I upgraded Windows XP to Service Pack
2, I can't use addresses like 127.0.0.2.
Some people who ask PuTTY to listen on localhost addresses other than 127.0.0.1 to forward
services such as SMB and Windows Terminal Services have found that doing so no longer works
since they upgraded to WinXP SP2.
This is apparently an issue with SP2 that is acknowledged by Microsoft in MS Knowledge Base
article 884020. The article links to a fix you can download.
(However, we've been told that SP2 also fixes the bug that means you need to use non-
127.0.0.1 addresses to forward Terminal Services in the first place.)

Question A.7.21: PSFTP commands seem to be missing a
directory separator (slash).
Some people have reported the following incorrect behaviour with PSFTP:
psftp> pwd
Remote directory is /dir1/dir2
psftp> get filename.ext
/dir1/dir2filename.ext: no such file or directory
This is not a bug in PSFTP. There is a known bug in some versions of portable OpenSSH (bug
697) that causes these symptoms; it appears to have been introduced around 3.7.x. It manifests
only on certain platforms (AIX is what has been reported to us).
There is a patch for OpenSSH attached to that bug; it's also fixed in recent versions of portable
OpenSSH (from around 3.8).

Section A.8: Security questions
Question A.8.1: Is it safe for me to download PuTTY and use it on a public PC?
Question A.8.2: What does PuTTY leave on a system? How can I clean up after it?
Question A.8.3: How come PuTTY now supports DSA, when the website used to say how
insecure it was?
Question A.8.4: Couldn't Pageant use VirtualLock() to stop private keys being written to
disk?

Question A.8.1: Is it safe for me to download PuTTY and use it on
a public PC?
It depends on whether you trust that PC. If you don't trust the public PC, don't use PuTTY on it,
and don't use any other software you plan to type passwords into either. It might be watching
your keystrokes, or it might tamper with the PuTTY binary you download. There is no program
safe enough that you can run it on an actively malicious PC and get away with typing passwords
into it.
If you do trust the PC, then it's probably OK to use PuTTY on it (but if you don't trust the
network, then the PuTTY download might be tampered with, so it would be better to carry
PuTTY with you on a floppy).

Question A.8.2: What does PuTTY leave on a system? How can I
clean up after it?
PuTTY will leave some Registry entries, and a random seed file, on the PC (see question A.5.2).
If you are using PuTTY on a public PC, or somebody else's PC, you might want to clean these up
when you leave. You can do that automatically, by running the command putty -cleanup.

Question A.8.3: How come PuTTY now supports DSA, when the
website used to say how insecure it was?
DSA has a major weakness if badly implemented: it relies on a random number generator to far
too great an extent. If the random number generator produces a number an attacker can predict,
the DSA private key is exposed - meaning that the attacker can log in as you on all systems that
accept that key.
The PuTTY policy changed because the developers were informed of ways to implement DSA
which do not suffer nearly as badly from this weakness, and indeed which don't need to rely on
random numbers at all. For this reason we now believe PuTTY's DSA implementation is
probably OK. However, if you have the choice, we still recommend you use RSA instead.

Question A.8.4: Couldn't Pageant use VirtualLock() to stop
private keys being written to disk?
Unfortunately not. The VirtualLock() function in the Windows API doesn't do a proper job:
it may prevent small pieces of a process's memory from being paged to disk while the process is
running, but it doesn't stop the process's memory as a whole from being swapped completely out
to disk when the process is long-term inactive. And Pageant spends most of its time inactive.

Section A.9: Administrative questions
Question A.9.1: Would you like me to register you a nicer domain name?
Question A.9.2: Would you like free web hosting for the PuTTY web site?
Question A.9.3: Would you link to my web site from the PuTTY web site?
Question A.9.4: Why don't you move PuTTY to SourceForge?
Question A.9.5: Why can't I subscribe to the putty-bugs mailing list?
Question A.9.6: If putty-bugs isn't a general-subscription mailing list, what is?
Question A.9.7: How can I donate to PuTTY development?
Question A.9.8: Can I have permission to put PuTTY on a cover disk / distribute it with other
software / etc?

Question A.9.1: Would you like me to register you a nicer domain
name?
No, thank you. Even if you can find one (most of them seem to have been registered already, by
people who didn't ask whether we actually wanted it before they applied), we're happy with the
PuTTY web site being exactly where it is. It's not hard to find (just type ‘putty’ into google.com
and we're the first link returned), and we don't believe the administrative hassle of moving the
site would be worth the benefit.
In addition, if we did want a custom domain name, we would want to run it ourselves, so we
knew for certain that it would continue to point where we wanted it, and wouldn't suddenly
change or do strange things. Having it registered for us by a third party who we don't even know
is not the best way to achieve this.

Question A.9.2: Would you like free web hosting for the PuTTY
web site?
We already have some, thanks.

Question A.9.3: Would you link to my web site from the PuTTY
web site?
Only if the content of your web page is of definite direct interest to PuTTY users. If your content
is unrelated, or only tangentially related, to PuTTY, then the link would simply be advertising for
you.
One very nice effect of the Google ranking mechanism is that by and large, the most popular web
sites get the highest rankings. This means that when an ordinary person does a search, the top
item in the search is very likely to be a high-quality site or the site they actually wanted, rather
than the site which paid the most money for its ranking.
The PuTTY web site is held in high esteem by Google, for precisely this reason: lots of people
have linked to it simply because they like PuTTY, without us ever having to ask anyone to link to
us. We feel that it would be an abuse of this esteem to use it to boost the ranking of random
advertisers' web sites. If you want your web site to have a high Google ranking, we'd prefer that
you achieve this the way we did - by being good enough at what you do that people will link to
you simply because they like you.
In particular, we aren't interested in trading links for money (see above), and we certainly aren't
interested in trading links for other links (since we have no advertising on our web site, our
Google ranking is not even directly worth anything to us). If we don't want to link to you for
free, then we probably won't want to link to you at all.
If you have software based on PuTTY, or specifically designed to interoperate with PuTTY, or in
some other way of genuine interest to PuTTY users, then we will probably be happy to add a link
to you on our Links page. And if you're running a mirror of the PuTTY web site, we're definitely
interested.

Question A.9.4: Why don't you move PuTTY to SourceForge?
Partly, because we don't want to move the web site location (see question A.9.1).
Also, security reasons. PuTTY is a security product, and as such it is particularly important to
guard the code and the web site against unauthorised modifications which might introduce subtle
security flaws. Therefore, we prefer that the CVS repository, web site and FTP site remain where
they are, under the direct control of system administrators we know and trust personally, rather
than being run by a large organisation full of people we've never met and which is known to have
had breakins in the past.
No offence to SourceForge; I think they do a wonderful job. But they're not ideal for everyone,
and in particular they're not ideal for us.

Question A.9.5: Why can't I subscribe to the putty-bugs mailing
list?
Because you're not a member of the PuTTY core development team. The putty-bugs mailing list
is not a general newsgroup-like discussion forum; it's a contact address for the core developers,
and an internal mailing list for us to discuss things among ourselves. If we opened it up for
everybody to subscribe to, it would turn into something more like a newsgroup and we would be
completely overwhelmed by the volume of traffic. It's hard enough to keep up with the list as it
is.

Question A.9.6: If putty-bugs isn't a general-subscription mailing
list, what is?
There isn't one, that we know of.
If someone else wants to set up a mailing list or other forum for PuTTY users to help each other
with common problems, that would be fine with us, though the PuTTY team would almost
certainly not have the time to read it. It's probably better to use the established newsgroup
comp.security.ssh for this purpose.

Question A.9.7: How can I donate to PuTTY development?
Please, please don't feel you have to. PuTTY is completely free software, and not shareware. We
think it's very important that everybody who wants to use PuTTY should be able to, whether they
have any money or not; so the last thing we would want is for a PuTTY user to feel guilty
because they haven't paid us any money. If you want to keep your money, please do keep it. We
wouldn't dream of asking for any.
Having said all that, if you still really want to give us money, we won't argue :-) The easiest way
for us to accept donations is if you send money to <anakin@pobox.com> using PayPal
(www.paypal.com). Alternatively, if you don't trust PayPal, you could donate through e-gold
(www.e-gold.com): deposit your donation in account number 174769, then send us e-mail to
let us know you've done so (otherwise we might not notice for months!).
Small donations (tens of dollars or tens of euros) will probably be spent on beer or curry, which
helps motivate our volunteer team to continue doing this for the world. Larger donations will be
spent on something that actually helps development, if we can find anything (perhaps new
hardware, or a copy of Windows XP), but if we can't find anything then we'll just distribute the
money among the developers. If you want to be sure your donation is going towards something
worthwhile, ask us first. If you don't like these terms, feel perfectly free not to donate. We don't
mind.

Question A.9.8: Can I have permission to put PuTTY on a cover
disk / distribute it with other software / etc?
Yes. You need not bother asking us explicitly for permission. You already have permission.
Redistribution of the unmodified PuTTY binary in this way is entirely permitted by our licence
(see appendix C), and you are welcome to do it as much as you like.
If you are distributing PuTTY within your own organisation, or for use with your own product,
then we recommend (but do not insist) that you offer your own first-line technical support, to
answer questions directly relating to the interaction of PuTTY with your particular environment.
If your users mail us directly, we won't be able to give them very much help about things specific
to your own setup.

Section A.10: Miscellaneous questions
Question A.10.1: Is PuTTY a port of OpenSSH, or based on OpenSSH?
Question A.10.2: Where can I buy silly putty?
Question A.10.3: What does ‘PuTTY’ mean?
Question A.10.4: How do I pronounce ‘PuTTY’?

Question A.10.1: Is PuTTY a port of OpenSSH, or based on
OpenSSH?
No, it isn't. PuTTY is almost completely composed of code written from scratch for PuTTY. The
only code we share with OpenSSH is the detector for SSH1 CRC compensation attacks, written
by CORE SDI S.A.

Question A.10.2: Where can I buy silly putty?
You're looking at the wrong web site; the only PuTTY we know about here is the name of a
computer program.
If you want the kind of putty you can buy as an executive toy, the PuTTY team can personally
recommend Thinking Putty, which you can buy from Crazy Aaron's Putty World, at
www.puttyworld.com.

Question A.10.3: What does ‘PuTTY’ mean?
It's the name of a popular SSH and Telnet client. Any other meaning is in the eye of the beholder.
It's been rumoured that ‘PuTTY’ is the antonym of ‘getty’, or that it's the stuff that makes your
Windows useful, or that it's a kind of plutonium Teletype. We couldn't possibly comment on such
allegations.

Question A.10.4: How do I pronounce ‘PuTTY’?
Exactly like the English word ‘putty’, which we pronounce /ÿpÿtÿ/.

Appendix B: Feedback and bug reporting
This is a guide to providing feedback to the PuTTY development team. It is provided as both a
web page on the PuTTY site, and an appendix in the PuTTY manual.
Section B.1 gives some general guidelines for sending any kind of e-mail to the development
team. Following sections give more specific guidelines for particular types of e-mail, such as bug
reports and feature requests.
Section B.1: General guidelines
Section B.2: Reporting bugs
Section B.3: Requesting extra features
Section B.4: Requesting features that have already been requested
Section B.5: Support requests
Section B.6: Web server administration
Section B.7: Asking permission for things
Section B.8: Mirroring the PuTTY web site
Section B.9: Praise and compliments
Section B.10: E-mail address

Section B.1: General guidelines
The PuTTY development team gets a lot of mail. If you can possibly solve your own problem by
reading the manual, reading the FAQ, reading the web site, asking a fellow user, perhaps posting
on the newsgroup comp.security.ssh, or some other means, then it would make our lives
much easier.
We get so much e-mail that we literally do not have time to answer it all. We regret this, but
there's nothing we can do about it. So if you can possibly avoid sending mail to the PuTTY team,
we recommend you do so. In particular, support requests (section B.5) are probably better sent to
comp.security.ssh or passed to a local expert if possible.

The PuTTY contact email address is a private mailing list containing four or five core
developers. Don't be put off by it being a mailing list: if you need to send confidential data as
part of a bug report, you can trust the people on the list to respect that confidence. Also, the
archives aren't publicly available, so you shouldn't be letting yourself in for any spam by sending
us mail.
Please use a meaningful subject line on your message. We get a lot of mail, and it's hard to find
the message we're looking for if they all have subject lines like ‘PuTTY bug’.
Section B.1.1: Sending large attachments

Section B.1.1: Sending large attachments
Since the PuTTY contact address is a mailing list, e-mails larger than 40Kb will be held for
inspection by the list administrator, and will not be allowed through unless they really appear to
be worth their large size.
If you are considering sending any kind of large data file to the PuTTY team, it's almost always a
bad idea, or at the very least it would be better to ask us first whether we actually need the file.
Alternatively, you could put the file on a web site and just send us the URL; that way, we don't
have to download it unless we decide we actually need it, and only one of us needs to download
it instead of it being automatically copied to all the developers.
Some people like to send mail in MS Word format. Please don't send us bug reports, or any other
mail, as a Word document. Word documents are roughly fifty times larger than writing the same
report in plain text. In addition, most of the PuTTY team read their e-mail on Unix machines, so
copying the file to a Windows box to run Word is very inconvenient. Not only that, but several of
us don't even have a copy of Word!
Some people like to send us screen shots when demonstrating a problem. Please don't do this
without checking with us first - we almost never actually need the information in the screen shot.
Sending a screen shot of an error box is almost certainly unnecessary when you could just tell us
in plain text what the error was. (On some versions of Windows, pressing Ctrl-C when the error
box is displayed will copy the text of the message to the clipboard.) Sending a full-screen shot is
occasionally useful, but it's probably still wise to check whether we need it before sending it.
If you must mail a screen shot, don't send it as a .BMP file. BMPs have no compression and they
are much larger than other image formats such as PNG, TIFF and GIF. Convert the file to a
properly compressed image format before sending it.
Please don't mail us executables, at all. Our mail server blocks all incoming e-mail containing
executables, as a defence against the vast numbers of e-mail viruses we receive every day. If you
mail us an executable, it will just bounce.
If you have made a tiny modification to the PuTTY code, please send us a patch to the source
code if possible, rather than sending us a huge .ZIP file containing the complete sources plus
your modification. If you've only changed 10 lines, we'd prefer to receive a mail that's 30 lines
long than one containing multiple megabytes of data we already have.

Section B.2: Reporting bugs
If you think you have found a bug in PuTTY, your first steps should be:

• Check the Wishlist page on the PuTTY website, and see if we already know about the
problem. If we do, it is almost certainly not necessary to mail us about it, unless you think
you have extra information that might be helpful to us in fixing it. (Of course, if we
actually need specific extra information about a particular bug, the Wishlist page will say
so.)

• Check the Change Log on the PuTTY website, and see if we have already fixed the bug
in the development snapshots.

• Check the FAQ on the PuTTY website (also provided as appendix A in the manual), and
see if it answers your question. The FAQ lists the most common things which people
think are bugs, but which aren't bugs.

• Download the latest development snapshot and see if the problem still happens with that.
This really is worth doing. As a general rule we aren't very interested in bugs that appear
in the release version but not in the development version, because that usually means they
are bugs we have already fixed. On the other hand, if you can find a bug in the
development version that doesn't appear in the release, that's likely to be a new bug we've
introduced since the release and we're definitely interested in it.

If none of those options solved your problem, and you still need to report a bug to us, it is useful
if you include some general information:

• Tell us what version of PuTTY you are running. To find this out, use the "About PuTTY"
option from the System menu. Please do not just tell us ‘I'm running the latest version’; e-
mail can be delayed and it may not be obvious which version was the latest at the time
you sent the message.

• PuTTY is a multi-platform application; tell us what version of what OS you are running
PuTTY on. (If you're running on Unix, or Windows for Alpha, tell us, or we'll assume
you're running on Windows for Intel as this is overwhelmingly the case.)

• Tell us what protocol you are connecting with: SSH, Telnet, Rlogin or Raw mode.
• Tell us what kind of server you are connecting to; what OS, and if possible what SSH

server (if you're using SSH). You can get some of this information from the PuTTY Event
Log (see section 3.1.3.1 in the manual).

• Send us the contents of the PuTTY Event Log, unless you have a specific reason not to
(for example, if it contains confidential information that you think we should be able to
solve your problem without needing to know).

• Try to give us as much information as you can to help us see the problem for ourselves. If
possible, give us a step-by-step sequence of precise instructions for reproducing the fault.

• Don't just tell us that PuTTY ‘does the wrong thing’; tell us exactly and precisely what it
did, and also tell us exactly and precisely what you think it should have done instead.
Some people tell us PuTTY does the wrong thing, and it turns out that it was doing the
right thing and their expectations were wrong. Help to avoid this problem by telling us
exactly what you think it should have done, and exactly what it did do.

• If you think you can, you're welcome to try to fix the problem yourself. A patch to the
code which fixes a bug is an excellent addition to a bug report. However, a patch is never
a substitute for a good bug report; if your patch is wrong or inappropriate, and you
haven't supplied us with full information about the actual bug, then we won't be able to
find a better solution.

• http://www.chiark.greenend.org.uk/~sgtatham/bugs.html is an
article on how to report bugs effectively in general. If your bug report is particularly
unclear, we may ask you to go away, read this article, and then report the bug again.

It is reasonable to report bugs in PuTTY's documentation, if you think the documentation is
unclear or unhelpful. But we do need to be given exact details of what you think the
documentation has failed to tell you, or how you think it could be made clearer. If your problem
is simply that you don't understand the documentation, we suggest posting to the newsgroup
comp.security.ssh and see if someone will explain what you need to know. Then, if you
think the documentation could usefully have told you that, send us a bug report and explain how
you think we should change it.

Section B.3: Requesting extra features
If you want to request a new feature in PuTTY, the very first things you should do are:

• Check the Wishlist page on the PuTTY website, and see if your feature is already on the
list. If it is, it probably won't achieve very much to repeat the request. (But see section
B.4 if you want to persuade us to give your particular feature higher priority.)

• Check the Wishlist and Change Log on the PuTTY website, and see if we have already
added your feature in the development snapshots. If it isn't clear, download the latest
development snapshot and see if the feature is present. If it is, then it will also be in the
next release and there is no need to mail us at all.

If you can't find your feature in either the development snapshots or the Wishlist, then you
probably do need to submit a feature request. Since the PuTTY authors are very busy, it helps if
you try to do some of the work for us:

• Do as much of the design as you can. Think about ‘corner cases’; think about how your
feature interacts with other existing features. Think about the user interface; if you can't
come up with a simple and intuitive interface to your feature, you shouldn't be surprised
if we can't either. Always imagine whether it's possible for there to be more than one, or
less than one, of something you'd assumed there would be one of. (For example, if you
were to want PuTTY to put an icon in the System tray rather than the Taskbar, you should
think about what happens if there's more than one PuTTY active; how would the user tell
which was which?)

• If you can program, it may be worth offering to write the feature yourself and send us a
patch. However, it is likely to be helpful if you confer with us first; there may be design
issues you haven't thought of, or we may be about to make big changes to the code which
your patch would clash with, or something. If you check with the maintainers first, there
is a better chance of your code actually being usable.

Section B.4: Requesting features that have already been
requested
If a feature is already listed on the Wishlist, then it usually means we would like to add it to
PuTTY at some point. However, this may not be in the near future. If there's a feature on the
Wishlist which you would like to see in the near future, there are several things you can do to try
to increase its priority level:

• Mail us and vote for it. (Be sure to mention that you've seen it on the Wishlist, or we
might think you haven't even read the Wishlist). This probably won't have very much
effect; if a huge number of people vote for something then it may make a difference, but
one or two extra votes for a particular feature are unlikely to change our priority list
immediately. Offering a new and compelling justification might help. Also, don't expect a
reply.

• Offer us money if we do the work sooner rather than later. This sometimes works, but not
always. The PuTTY team all have full-time jobs and we're doing all of this work in our
free time; we may sometimes be willing to give up some more of our free time in
exchange for some money, but if you try to bribe us for a big feature it's entirely possible
that we simply won't have the time to spare - whether you pay us or not. (Also, we don't
accept bribes to add bad features to the Wishlist, because our desire to provide high-
quality software to the users comes first.)

• Offer to help us write the code. This is probably the only way to get a feature
implemented quickly, if it's a big one that we don't have time to do ourselves.

Section B.5: Support requests
If you're trying to make PuTTY do something for you and it isn't working, but you're not sure
whether it's a bug or not, then please consider looking for help somewhere else. This is one of
the most common types of mail the PuTTY team receives, and we simply don't have time to
answer all the questions. Questions of this type include:

• If you want to do something with PuTTY but have no idea where to start, and reading the
manual hasn't helped, try posting to the newsgroup comp.security.ssh and see if
someone can explain it to you.

• If you have tried to do something with PuTTY but it hasn't worked, and you aren't sure
whether it's a bug in PuTTY or a bug in your SSH server or simply that you're not doing
it right, then try posting to comp.security.ssh and see if someone can solve your
problem. Or try doing the same thing with a different SSH client and see if it works with
that. Please do not report it as a PuTTY bug unless you are really sure it is a bug in
PuTTY.

• If someone else installed PuTTY for you, or you're using PuTTY on someone else's
computer, try asking them for help first. They're more likely to understand how they
installed it and what they expected you to use it for than we are.

• If you have successfully made a connection to your server and now need to know what to
type at the server's command prompt, or other details of how to use the server-end
software, talk to your server's system administrator. This is not the PuTTY team's
problem. PuTTY is only a communications tool, like a telephone; if you can't speak the
same language as the person at the other end of the phone, it isn't the telephone
company's job to teach it to you.

If you absolutely cannot get a support question answered any other way, you can try mailing it to
us, but we can't guarantee to have time to answer it.

Section B.6: Web server administration
If the PuTTY web site is down (Connection Timed Out), please don't bother mailing us to tell us
about it. Most of us read our e-mail on the same machines that host the web site, so if those
machines are down then we will notice before we read our e-mail. So there's no point telling us
our servers are down.
Of course, if the web site has some other error (Connection Refused, 404 Not Found, 403
Forbidden, or something else) then we might not have noticed and it might still be worth telling
us about it.
If you want to report a problem with our web site, check that you're looking at our real web site
and not a mirror. The real web site is at
http://www.chiark.greenend.org.uk/~sgtatham/putty/; if that's not where
you're reading this, then don't report the problem to us until you've checked that it's really a
problem with the main site. If it's only a problem with the mirror, you should try to contact the
administrator of that mirror site first, and only contact us if that doesn't solve the problem (in
case we need to remove the mirror from our list).

Section B.7: Asking permission for things
PuTTY is distributed under the MIT Licence (see appendix C for details). This means you can do
almost anything you like with our software, our source code, and our documentation. The only
things you aren't allowed to do are to remove our copyright notices or the licence text itself, or to
hold us legally responsible if something goes wrong.
So if you want permission to include PuTTY on a magazine cover disk, or as part of a collection
of useful software on a CD or a web site, then permission is already granted. You don't have to
mail us and ask. Just go ahead and do it. We don't mind.
(If you want to distribute PuTTY alongside your own application for use with that application, or
if you want to distribute PuTTY within your own organisation, then we recommend you offer
your own first-line technical support, to answer questions about the interaction of PuTTY with
your environment. If your users mail us directly, we won't be able to tell them anything useful
about your specific setup.)
If you want to use parts of the PuTTY source code in another program, then it might be worth
mailing us to talk about technical details, but if all you want is to ask permission then you don't
need to bother. You already have permission.

Section B.8: Mirroring the PuTTY web site
Mirrors of the PuTTY web site are welcome, especially in regions not well covered by existing
mirrors. Please don't bother asking us for permission before setting up a mirror. You already have
permission. We are always happy to have more mirrors.
If you mail us after you have set up the mirror and checked that it works, and remember to let us
know which country your mirror is in, then we'll add it to the Mirrors page on the PuTTY
website.
If you have technical questions about the process of mirroring, then you might want to mail us
before setting up the mirror (see also the guidelines on the Mirrors page); but if you just want to
ask for permission, you don't need to. You already have permission.

Section B.9: Praise and compliments
One of the most rewarding things about maintaining free software is getting e-mails that just say
‘thanks’. We are always happy to receive e-mails of this type.
Regrettably we don't have time to answer them all in person. If you mail us a compliment and
don't receive a reply, please don't think we've ignored you. We did receive it and we were happy
about it; we just didn't have time to tell you so personally.
To everyone who's ever sent us praise and compliments, in the past and the future: you're
welcome!

Section B.10: E-mail address
The actual address to mail is <putty@projects.tartarus.org>.

Appendix C: PuTTY Licence
PuTTY is copyright 1997-2004 Simon Tatham.
Portions copyright Robert de Bath, Joris van Rantwijk, Delian Delchev, Andreas Schultz, Jeroen
Massar, Wez Furlong, Nicolas Barry, Justin Bradford, Ben Harris, Malcolm Smith, and CORE
SDI S.A.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

